Learn More
PubChem (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological properties of small molecules hosted by the US National Institutes of Health (NIH). PubChem BioAssay database currently contains biological test results for more than 700 000 compounds. The goal of PubChem is to make this information easily accessible to biomedical researchers.(More)
PubChem's BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for archiving biological tests of small molecules generated through high-throughput screening experiments, medicinal chemistry studies, chemical biology research and drug discovery programs. In addition, the BioAssay database contains data from high-throughput RNA(More)
PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public repository for information on chemical substances and their biological activities, launched in 2004 as a component of the Molecular Libraries Roadmap Initiatives of the US National Institutes of Health (NIH). For the past 11 years, PubChem has grown to a sizable system, serving as a chemical information(More)
PubChem (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activity data of small molecules and RNAi reagents. The mission of PubChem is to deliver free and easy access to all deposited data, and to provide intuitive data analysis tools. The PubChem BioAssay database currently contains 500,000 descriptions of assay protocols, covering(More)
The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activities of small molecules and small interfering RNAs (siRNAs) hosted by the US National Institutes of Health (NIH). It archives experimental descriptions of assays and biological test results and makes the information freely accessible to the public. A(More)
BACKGROUND PubChem is an open repository for small molecules and their experimental biological activity. PubChem integrates and provides search, retrieval, visualization, analysis, and programmatic access tools in an effort to maximize the utility of contributed information. There are many diverse chemical structures with similar biological efficacies(More)
Phospholipase D (PLD) generates lipid signals that coordinate membrane trafficking with cellular signaling. PLD activity in vitro and in vivo is dependent on phosphoinositides with a vicinal 4,5-phosphate pair. Yeast and mammalian PLDs contain an NH2-terminal pleckstrin homology (PH) domain that has been speculated to specify both subcellular localization(More)
The regulatory domain of protein kinase Calpha (PKCalpha) contains three membrane-targeting modules, two C1 domains (C1A and C1B) that bind diacylglycerol and phorbol ester, and the C2 domain that is responsible for the Ca2+-dependent membrane binding. Accumulating evidence suggests that C1A and C2 domains of PKCalpha are tethered in the resting state and(More)
The People's Republic of China has one of the highest rates of hepatitis B virus (HBV) infection. This review summarizes recent data from studies of entecavir, one of the recommended first-line oral therapies for treating chronic hepatitis B, in Chinese HBV-infected patients. Long-term treatment with entecavir is efficacious and well tolerated, and studies(More)
Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been(More)