Learn More
Round-robin striping, due to its uniform distribution and low-complexity computation, is widely used by applications which demand high bandwidth and massive storage. Because many systems are nonstoppable when their storage capacity and I/O bandwidth need increasing, an efficient and online mechanism to add more disks to striped volumes is very important. In(More)
Flash memory has gained in popularity as storage devices for both enterprise and embedded systems because of its high performance, low energy and reduced cost. The endurance problem of flash memory, however, is still a challenge and is getting worse as storage density increases with the adoption of multi-level cells (MLC). Prior work has addressed wear(More)
Emerging non-volatile memory (NVM) technologies enable data persistence at the main memory level at access speeds close to DRAM. In such persistent memories, memory writes need to be performed in strict order to satisfy storage consistency requirements and enable correct recovery from system crashes. Unfortunately, adhering to a strict order for writes to(More)
While Phase Change Memory (PCM) holds a great promise as a complement or even replacement of DRAM-based memory and flash-based storage, it must effectively overcome its limit on write endurance to be a reliable device for an extended period of intensive use. The limited write endurance can lead to permanent stuck-at faults after a certain number of writes,(More)
Emerging <i>non-volatile main memories</i> (NVMMs) provide data persistence at the main memory level. To avoid the double-copy overheads among the user buffer, the OS page cache, and the storage layer, state-of-the-art NVMM-aware file systems bypass the OS page cache which directly copy data between the user buffer and the NVMM storage. However, one major(More)
Large-scale erasure-coded storage systems have a serious performance problem due to I/O congestion and disk media access congestion caused by read-modify-write operations involved in small-write operations. All the existing technologies based on the conventional disk can provide very limited performance improvement. This paper presents a new Disk(More)
Emerging non-volatile memories (NVMs), which include PC-RAM and STT-RAM, have been proposed to replace DRAM, mainly because they have better scalability and lower standby power. However, previous research has demonstrated that these NVMs cannot completely replace DRAM due to either lifetime/performance (PCRAM) or density (STT-RAM) issues. Recently, a new(More)