Learn More
In this paper, we propose an improved learning algorithm named self-adaptive evolutionary extreme learning machine (SaE-ELM) for single hidden layer feedforward networks (SLFNs). In SaE-ELM, the network hidden node parameters are optimized by the self-adaptive differential evolution algorithm, whose trial vector generation strategies and their associated(More)
Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually(More)
With the rapid development of digital image editing tools, the authenticity of digital images becomes questionable in recent years. Image tampering detection is a technology that detects tampered images by using intrinsic image regularities. However, existing intrinsic image regularities are designed for one specific type of tampering operations. When(More)
Traditional risk score prediction is based on vital signs and clinical assessment. In this paper, we present an intelligent scoring system for the prediction of cardiac arrest within 72 h. The patient population is represented by a set of feature vectors, from which risk scores are derived based on geometric distance calculation and support vector machine.(More)
In this paper, we introduce a new learning method for composite function wavelet neural networks (CFWNN) by combining the differential evolution (DE) algorithm with extreme learning machine (ELM), in short, as CWN-E-ELM. The recently proposed CFWNN trained with ELM (CFWNN-ELM) has several promising features. But the CFWNN-ELM may have some redundant nodes(More)