Jiuchang Zhong

Learn More
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is a pleiotropic monocarboxypeptidase capable of metabolizing several peptide substrates. We hypothesized that ACE2 is a negative regulator of angiotensin II (Ang II)-mediated signaling and its adverse effects on the cardiovascular system. METHODS AND RESULTS Ang II infusion (1.5 mg x kg(-1) x d(-1)) for(More)
OBJECTIVE Diabetic nephropathy is one of the most common causes of end-stage renal failure. Inhibition of ACE2 function accelerates diabetic kidney injury, whereas renal ACE2 is downregulated in diabetic nephropathy. We examined the ability of human recombinant ACE2 (hrACE2) to slow the progression of diabetic kidney injury. RESEARCH DESIGN AND METHODS(More)
OBJECTIVE The apelin receptor APJ is a putative receptor protein related to angiotensin (Ang) type 1 receptor. The apelin-APJ system has been implicated in diabetes, but its role in the diabetic vasculature and the mechanisms involved remain unclear. Our aim here was to explore the regulatory role of apelin in the aortic vascular tone in diabetic mice. (More)
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that metabolizes Ang II into Ang 1-7, thereby functioning as a negative regulator of the renin-angiotensin system. We hypothesized that ACE2 deficiency may compromise the cardiac response to myocardial infarction (MI). METHODS AND RESULTS In response to MI (induced by left(More)
Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase capable of metabolizing angiotensin (Ang) II into Ang 1 to 7. We hypothesized that ACE2 is a negative regulator of Ang II signaling and its adverse effects on the kidneys. Ang II infusion (1.5 mg/kg⁻¹/d⁻¹) for 4 days resulted in higher renal Ang II levels and increased nicotinamide adenine(More)
RATIONALE Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2 exacerbates cardiovascular complications induced by diabetes. OBJECTIVE To define the role of ACE2 in diabetic cardiovascular complications. (More)
Loss of angiotensin (Ang)-converting enzyme 2 (ACE2) and inability to metabolize Ang II to Ang 1-7 perpetuate the actions of Ang II after biomechanical stress and exacerbate early adverse myocardial remodeling. Ang receptor blockers are known to antagonize the effect of Ang II by blocking Ang II type 1 receptor (AT(1)R) and also by upregulating the ACE2(More)
Profilin-1 has recently been linked to vascular hypertrophy and remodeling. Here, we assessed the hypothesis that angiotensin (Ang) II type I receptor antagonist telmisartan improves vascular hypertrophy by modulation of expression of profilin-1 and angiotensin-converting enzyme 2 (ACE2). Ten-week-old male spontaneously hypertensive rats (SHR) were received(More)
BACKGROUND MicroRNAs (miRNAs) play important roles in carcinogenesis. miRNA-106a (miR-106a) has oncogenic activity in humans, and often has altered expression. The clinical significance of miR-106a in the diagnosis of gastric carcinoma is poorly understood. METHODS The level of miR-106a in 55 gastric carcinoma and 17 non-tumor tissues was quantified by(More)
Cyclin-dependent kinase 2 (CDK2) is a member of serine/ threonine protein kinases, which initiates the principal transitions of the eukaryotic cell cycle and is a promising target for cancer therapy. The present study was designed to inhibit cdk2 gene expression to induce cell cycle arrest and cell proliferation suppression. Here, we constructed a series of(More)