Learn More
Large-conductance Ca2+- and voltage-dependent potassium (BK) channels exhibit functional diversity not explained by known splice variants of the single Slo alpha-subunit. Here we describe an accessory subunit (beta3) with homology to other beta-subunits of BK channels that confers inactivation when it is coexpressed with Slo. Message encoding the beta3(More)
The anterior-posterior axis of the mouse embryo is established by two distinct organizing centres in the anterior visceral endoderm and the distal primitive streak. These organizers induce and pattern the head and trunk respectively, and have been proposed to be localized through coordinate cell movements that rotate a pre-existing proximal-distal axis.(More)
A family of accessory beta subunits significantly contributes to the functional diversity of large-conductance, Ca(2+)- and voltage-dependent potassium (BK) channels in native cells. Here we describe the functional properties of one variant of the beta subunit family, which confers properties on BK channels totally unlike any that have as yet been observed.(More)
The properties of Ca(2+)- and voltage-dependent K+ currents and their role in defining membrane potential were studied in cultured rat chromaffin cells. Two variants of large-conductance, Ca2+ and voltage-dependent BK channels, one noninactivating and one inactivating, were largely segregated among patches. Whole-cell noninactivating and inactivating(More)
Alpha1 tubulin gene expression is induced in the developing and regenerating CNS of vertebrates. Therefore, alpha1 tubulin gene expression may serve as a good probe for mechanisms underlying CNS development and regeneration. One approach to identify these mechanisms is to work backwards from the genome. This requires identification of alpha1 tubulin DNA(More)
Calcium-dependent potassium (BK-type) Ca2+ and voltage-dependent K+ channels in chromaffin cells exhibit an inactivation that probably arises from coassembly of Slo1 alpha subunits with auxiliary beta subunits. One goal of this work was to determine whether the Ca2+ dependence of inactivation arises from any mechanism other than coupling of inactivation to(More)
Most BK-type voltage- and Ca(2+)-dependent K+ channels in rat chromaffin cells exhibit rapid inactivation. This inactivation is abolished by brief trypsin application to the cytosolic face of membrane patches. Here we examine the effects of cytosolic channel blockade and pore occupancy on this inactivation process, using inside-out patches and whole-cell(More)
Developing and regenerating neurons induce genes whose products are necessary for axonal growth, such as that encoding alpha1 tubulin. To determine whether alpha1 tubulin gene induction uses similar mechanisms during CNS development and regeneration, we compared wild-type and mutant alpha1 tubulin promoter activity in the developing and regenerating CNS of(More)
Human hnRNP A1 is a versatile single-stranded nucleic acid-binding protein that functions in various aspects of mRNA maturation and in telomere length regulation. The crystal structure of UP1, the amino-terminal domain of human hnRNP A1 containing two RNA-recognition motifs (RRMs), bound to a 12-nucleotide single-stranded telomeric DNA has been determined(More)
Rat chromaffin cells express an interesting diversity of Ca(2+)-dependent K+ channels, including a voltage-independent, small-conductance, apamin-sensitive SK channel and two variants of voltage-dependent, large-conductance BK channels. The two BK channel variants are differentially segregated among chromaffin cells, such that BK current is completely(More)