Learn More
For the human hand rehabilitation, the palmar opposition is an important function to evaluate the recovery of hand motor capabilities. This paper proposes an exoskeleton-type hand rehabilitation assistive device which is able to be applied to index finger as well as thumb. The kinematics and workspace of index fingertip and thumb-tip are analyzed. The(More)
This paper presents an interactive exoskeleton device for hand rehabilitation, iHandRehab, which aims to satisfy the essential requirements for both active and passive rehabilitation motions. iHandRehab is comprised of exoskeletons for the thumb and index finger. These exoskeletons are driven by distant actuation modules through a cable/sheath transmission(More)
This paper presents a new exoskeleton with 4 degrees of freedom (DOF) for index finger rehabilitation. The device can generate bi-directional movement for all joints of the finger through cable transmission, which is required for passive and active trainings. With two prismatic kinematic joints in the design, it can accommodate to some extent variety of(More)
—This paper investigates the control algorithm of an exoskeleton for hand rehabilitation, which accomplishes both active and passive control mode. A double closed loop control structure is developed, which consists of position control loop and compensation control loop. The position controller is based on impedance control. The compensation controller is(More)
This paper investigates the control algorithm of an exoskeleton for hand rehabilitation, which can realize the active, passive, and assisted rehabilitation motion. The active mode is accomplished with the force control algorithm during which the resistance is compensated in free space and the virtual interactive force is rendered to the finger in constraint(More)
The resistance compensation, especially the friction compensation in the Bowden cable transmission is a difficult issue to be handled. Aimed to the resistance reduction requirement in the active rehabilitative motion, a resistance compensation control method is proposed. Based on the simplified transmission model, the resistance, including the cable(More)
This paper investigates the control algorithm of an exoskeleton for hand rehabilitation, which accomplishes both active and passive rehabilitation training. In the passive mode control the PID control algorithm is executed in the velocity mode of the driver. In the active mode control, control architecture is proposed to deal with in both free space and(More)
This paper investigates the deformation simulation of hand-object interaction for the virtual rehabilitation system of hand. The deformation along the contact normal on hand and object is investigated. Following the anatomy of human hand, the virtual hand organizational structure is simplified as a 2-layered representation, of which the inner layer models(More)
This paper investigates the simulation of a virtual index finger interacted with an object for a virtual rehabilitation system of human hand. Corresponding to the anatomy of human hand, the virtual finger is modeled as three phalanges which are connected by three joints, which is essentially a 4-Degree-of-Freedom (DOF) open chain mechanism. The special(More)