Jitendra Malik

Learn More
w e propose Q novel approach for solving the perceptual grouping problem in vision. Rather than focusing on local features and their consistencies in the amage data, our approach aims a t extracting the global impression of an image. We treat image segmentation QS (I graph partitioning problem and propose Q novel global criterion, the normalized cut, for(More)
Abstracf-The scale-space technique introduced by Witkin involves generating coarser resolution images by convolving the original image with a Gaussian kernel. This approach has a major drawback: it is difficult to obtain accurately the locations of the “semantically meaningful” edges at coarse scales. In this paper we suggest a new definition of(More)
This paper presents my work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation. In this paper, I propose shape detection using a feature called shape context. Shape context describes all boundary points of a shape with respect to any single boundary point. Thus it is descriptive(More)
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision(More)
This paper presents a database containing ‘ground truth’ segmentations produced by humans for images of a wide variety of natural scenes. We define an error measure which quantifies the consistency between segmentations of differing granularities and find that different human segmentations of the same image are highly consistent. Use of this dataset is(More)
This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming(More)
The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, we train a classifier using human(More)
We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the response function of the imaging process, up to factor of scale,(More)
We propose a unified approach for bottom-up hierarchical image segmentation and object candidate generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information.(More)
Straightforward classification using kernelized SVMs requires evaluating the kernel for a test vector and each of the support vectors. For a class of kernels we show that one can do this much more efficiently. In particular we show that one can build histogram intersection kernel SVMs (IKSVMs) with runtime complexity of the classifier logarithmic in the(More)