Learn More
The subject of this article is detection of brain magnetic fields, or magnetoencephalography (MEG). The brain fields are many orders of magnitude smaller than the environmental magnetic noise and their measurement represent a significant metrological challenge. The only detectors capable of resolving such small fields and at the same time handling the large(More)
In recent years, the use of beamformers for source localisation has significantly improved the spatial accuracy of magnetoencephalography. In this paper, we examine techniques by which to optimise experimental design, and ensure that the application of beamformers yields accurate results. We show that variation in the experimental duration, or variation in(More)
We have combined Signal Space Separation and beamformers (SSS beamformer). The SSS beamformer was tested by simulation in the presence of simulated brain noise. The SSS beamformer performs at least as well as the conventional beamformer, provided that the expansion order is sufficiently high. For beamformer outputs which depend on power or power difference(More)
Modulatory influences of skilled exploratory finger movements on somatosensory evoked magnetic fields evoked by median nerve stimulation were investigated in six healthy subjects using a whole head magnetometer (MEG) system. The exploratory finger movements caused major changes in the somatosensory evoked fields. The most prominent effect was a reversal of(More)
We present a new method for improving the signal-to-noise ratio (SNR) of event-related fetal MEG signals based upon the SAM minimum-variance beamformer. SAM could separate the evoked response source activity from the remaining fMEG signal and interference if the evoked response source coordinates and forward model were know. However, this requires knowledge(More)
In order to obtain adequate signal to noise ratio (SNR), stimulus-evoked brain signals are averaged over a large number of trials. However, in certain applications, e.g. fetal magnetoencephalography (MEG), this approach fails due to underlying conditions (inherently small signals, non-stationary/poorly characterized signals, or limited number of trials).(More)
Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including(More)
This paper investigates the application of source reconstruction methodologies to EEG data recorded in concurrent EEG/fMRI experiments at 7T. An EEG phantom containing a dipolar current source is described and used to investigate the accuracy of source localisation. Both dipole fitting and beamformer algorithms are shown to yield accurate locations for the(More)
Fetal brain signals produce weak magnetic fields at the maternal abdominal surface. In the presence of much stronger interference these weak fetal fields are often nearly indistinguishable from noise. Our initial objective was to validate these weak fetal brain fields by demonstrating that they agree with the electromagnetic model of the fetal brain. The(More)
Flash-evoked responses can be recorded from the fetus in utero. However, a standard analysis approach based on orthogonal projection (OP) to attenuate maternal and fetal cardiac signals leads to a spatial redistribution of the signal. This effect prevents the correlation of source location with a known fetal head location in some cases and the(More)