Jiri Vrba

Learn More
In recent years, the use of beamformers for source localisation has significantly improved the spatial accuracy of magnetoencephalography. In this paper, we examine techniques by which to optimise experimental design, and ensure that the application of beamformers yields accurate results. We show that variation in the experimental duration, or variation in(More)
This study shows that the spatial specificity of MEG beamformer estimates of electrical activity can be affected significantly by the way in which covariance estimates are calculated. We define spatial specificity as the ability to extract independent timecourse estimates of electrical brain activity from two separate brain locations in close proximity.(More)
This paper investigates the application of source reconstruction methodologies to EEG data recorded in concurrent EEG/fMRI experiments at 7T. An EEG phantom containing a dipolar current source is described and used to investigate the accuracy of source localisation. Both dipole fitting and beamformer algorithms are shown to yield accurate locations for the(More)
We have combined Signal Space Separation and beamformers (SSS beamformer). The SSS beamformer was tested by simulation in the presence of simulated brain noise. The SSS beamformer performs at least as well as the conventional beamformer, provided that the expansion order is sufficiently high. For beamformer outputs which depend on power or power difference(More)
The fetal magnetoencephalogram (fMEG) is measured in the presence of large interference from the maternal and fetal magnetocardiograms. This interference can be efficiently attenuated by orthogonal projection of the corresponding spatial vectors. However, the projection operators redistribute the fMEG signal among sensors. Although redistribution can be(More)
The study objective was to determine whether short-term serial magnetoencephalographic (MEG) measurements would increase the odds in favor of obtaining fetal auditory evoked responses in normal fetuses. The recordings were performed in two phases using the newly developed 151-channel fetal MEG system, superconducting quantum interference device array for(More)
Recording fetal magnetoencephalographic (fMEG) signals in-utero is a demanding task due to biological interference, especially maternal and fetal magnetocardiographic (MCG) signals. A method based on orthogonal projection of MCG signal space vectors (OP) was evaluated and compared with independent component analysis (ICA). The evaluation was based on MCG(More)
We investigated the feasibility of recording visual evoked brain activity in the human fetus by use of non-invasive magnetoencephalography (MEG). Each recording lasted 6 min and consisted of a sequence of 180 flashes with 33 ms duration delivered 2 s apart over the maternal abdomen. Four of ten fetuses included showed a response; the ranges of amplitude and(More)
Fetal magnetoencephalography (fMEG) recordings are contaminated by maternal and fetal magnetocardiography (MCG) signals and by other biological and environmental interference. Currently, all methods for the attenuation of these signals are based on a time-domain approach. We have developed and tested a frequency dependent procedure for removal of MCG and(More)
Analysis of fetal magnetoencephalographic brain recordings is restricted by low signal to noise ratio (SNR) and non-stationarity of the sources. Beamformer techniques have been applied to improve SNR of fetal evoked responses. However, until now the effect of non-stationarity was not taken into account in detail, because the detection of evoked responses is(More)