Learn More
Rigid p-octiphenyl rods were used to create helical tetrameric pi-stacks of blue, red-fluorescent naphthalene diimides that can span lipid bilayer membranes. In lipid vesicles containing quinone as electron acceptors and surrounded by ethylenediaminetetraacetic acid as hole acceptors, transmembrane proton gradients arose through quinone reduction upon(More)
The recognition and transport of anions is usually accomplished by hydrogen bonding, ion pairing, metal coordination, and anion-dipole interactions. Here, we elaborate on the concept to use anion-pi interactions for this purpose. Different to the popular cation-pi interactions, applications of the complementary pi-acidic surfaces do not exist. This is(More)
Design, synthesis, and multifunctionality of p-octiphenyl beta-barrel pores with external LRL triads and internal HH dyads are described. Molecular recognition of anionic fullerenes > calixarenes > pyrenes by guanidinium arrays at the outer pore surface is shown to result in pore opening, whereas alpha-helix recognition within the topologically matching(More)
Attractive in theory and confirmed to exist, anion-pi interactions have never really been seen at work. To catch them in action, we prepared a collection of monomeric, cyclic and rod-shaped naphthalenediimide transporters. Their ability to exert anion-pi interactions was demonstrated by electrospray tandem mass spectrometry in combination with theoretical(More)
The sensation of taste is mediated by activation or deactivation of transmembrane pores. Artificial stimulus-responsive pores are enormously appealing as sensor components because changes in their activity are readily detectable in many different ways. However, the detection of multiple components in complex matrices (such as foods) with one pore sensor has(More)
We report the design, synthesis, and evaluation of rigid oligonaphthalenediimide (O-NDI) rods that are expected to act as transmembrane anion-pi slides. Studies in fluorogenic large unilamellar egg yolk phosphatidylcholine vesicles reveal that rigid O-NDI rods mediate anion-selective transport with a rare halide VI selectivity sequence (Cl- > F- > Br- >(More)
The transport of ions and molecules across lipid bilayer membranes connects cells and cellular compartments with their environment. This biological process is central to a host of functions including signal transduction in neurons and the olfactory and gustatory sensing systems, the translocation of biosynthetic intermediates and products, and the uptake of(More)
In biology and chemistry, the transport of anions across lipid bilayer membranes is usually achieved by sophisticated supramolecular architectures. Significant size reduction of transporters is hampered by the intrinsically hydrophilic nature of typical anion-binding functionalities, hydrogen-bond donors or cations. To maximize the atom efficiency of anion(More)
Shape-persistent oligo-p-phenylene-N,N-naphthalenediimide (O-NDI) rods are introduced as anion-pi slides for chloride-selective multiion hopping across lipid bilayers. Results from end-group engineering and covalent capture as O-NDI hairpins suggested that self-assembly into transmembrane O-NDI bundles is essential for activity. A halide topology VI (Cl > F(More)