Learn More
HIV-1-infected individuals can harbor viral isolates that can use CCR5, as well as CXCR4, for viral entry. To genetically engineer HIV-1 resistance in CD4(+) T cells, we assessed whether transient, adenovirus delivered zinc-finger nuclease (ZFN) disruption of genomic cxcr4 or stable lentiviral expression of short hairpin RNAs (shRNAs) targeting CXCR4 mRNAs(More)
The HIV-1 nucleocapsid (NC) is a RNA/DNA binding protein encoded within the Gag polyprotein, which is critical for the selection and chaperoning of viral genomic RNA during virion assembly. RNA/DNA binding occurs through a highly conserved zinc-knuckle motif present in NC. Given the necessity of NC-viral RNA/DNA interaction for viral replication,(More)
Establishing peripheral CD8(+) T cell tolerance is vital to avoid immune mediated destruction of healthy self-tissues. However, it also poses a major impediment to tumor immunity since tumors are derived from self-tissue and often induce T cell tolerance and dysfunction. Thus, understanding the mechanisms that regulate T cell tolerance versus immunity has(More)
Coinhibitory receptor blockade is a promising strategy to boost T-cell immunity against a variety of human cancers. However, many patients still do not benefit from this treatment, and responders often experience immune-related toxicities. These issues highlight the need for advanced mechanistic understanding to improve patient outcomes and uncover(More)
While the role of drug resistance mutations in HIV protease has been studied comprehensively, mutations in its substrate, Gag, have not been extensively cataloged. Using deep sequencing, we analyzed a unique collection of longitudinal viral samples from 93 patients who have been treated with therapies containing protease inhibitors (PIs). Due to the high(More)
CD8(+) T cells must detect foreign antigens and differentiate into effector cells to eliminate infections. But, when self-antigen is recognized instead, mechanisms of peripheral tolerance prevent acquisition of effector function to avoid autoimmunity. These distinct responses are influenced by inflammatory and regulatory clues from the tissue environment,(More)
The development of next-generation sequencing technologies has facilitated the study of HIV drug resistance evolution. However, the high capacity and per-run cost of many sequencers is not ideal for viral sequencing unless many samples are analyzed simultaneously. Ion semiconductor sequencing has recently emerged as a flexible, lower-cost alternative with(More)
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments(More)
In the final issue of Science in 2013, the American Association of Science recognized progress in the field of cancer immunotherapy as the 'Breakthrough of the Year.' The achievements were actually twofold, owing to the early success of genetically engineered chimeric antigen receptors (CAR) and to the mounting clinical triumphs achieved with checkpoint(More)
Interleukin-2 (IL2) was among the earliest reagents used for cancer immunotherapy due to its ability to support the survival and function of tumor-reactive T cells. However, treatment with IL2 is accompanied by off-target toxicity and low response rates in patients. In mouse models, these issues are largely overcome when IL2 is administered as a(More)