Learn More
—In the setting of the two-user broadcast channel, recent work by Maddah-Ali and Tse has shown that knowledge of prior channel state information at the transmitter (CSIT) can be useful, even in the absence of any knowledge of current CSIT. Very recent work by Kobayashi et al., Yang et al., and Gou and Jafar, extended this to the case where, instead of no(More)
This work considers the multiuser multiple-input single-output (MISO) broadcast channel (BC), where a transmitter with M antennas transmits information to K single-antenna users, and where - as expected - the quality and timeliness of channel state information at the transmitter (CSIT) is imperfect. Motivated by the fundamental question of how much feedback(More)
—For the two-user MISO broadcast channel with imperfect and delayed channel state information at the transmitter (CSIT), the work explores the tradeoff between performance, and CSIT timeliness and quality. The work considers a broad setting where communication takes place in the presence of a random fading process, and in the presence of a feedback process(More)
—In the setting of the time-selective two-user multiple-input single-output (MISO) broadcast channel (BC), recent work by Tandon et al. considered the case where-in the presence of error-free delayed channel state information at the transmitter (delayed CSIT)-the current CSIT for the channel of user 1 and of user 2, alternate between the two extreme states(More)
In many wireless networks, link strengths are affected by many topological factors such as different distances, shadowing and inter-cell interference, thus resulting in some links being generally stronger than other links. From an information theoretic point of view, accounting for such topological aspects has remained largely unexplored, despite strong(More)
In the setting of the two-user broadcast channel, where a two-antenna transmitter communicates information to two single-antenna receivers, recent work by Maddah-Ali and Tse has shown that perfect knowledge of delayed channel state information at the transmitter (perfect delayed CSIT) can be useful, even in the absence of any knowledge of current CSIT.(More)
For the two-user MISO broadcast channel with imperfect and delayed channel state information at the transmitter (CSIT), the work explores the tradeoff between performance on the one hand, and CSIT timeliness and accuracy on the other hand. This paper considers a broad setting where communication takes place in the presence of a random fading process, and in(More)
The work considers the two-user MISO broadcast channel with a gradual and delayed accumulation of channel state information at the transmitter (CSIT), and addresses the question of how much feedback is necessary, and when, in order to achieve a certain degrees-of-freedom (DoF) performance. Motivated by limited-capacity feedback links with delays, that may(More)
In the setting of the two-user (M, N) multiple-input multiple-output (MIMO) broadcast channel (BC), recent work by Maddah-Ali and Tse, and Vaze and Varanasi have revealed the usefulness of delayed channel state information at the transmitter (perfect delayed CSIT). Our work studies the general case of communicating with imperfect delayed CSIT, and proceeds(More)