Learn More
This paper presents the design of a novel powered ankle-foot prosthesis with compliant ankle and segmented foot. The powered compliant ankle is proposed to replace the able-bodied ankle which can provide sufficient power to propel the body upward and forward during bipedal walking. In order to make the walking gaits of the amputees more stable and natural,(More)
Current finite-state control strategies for powered below-knee prosthesis, though effective to the normal gait, can not eliminate the disturbance of abnormal gaits such as slip and stamp. In addition, toe joint is not taken into consideration. This paper presents a finite-state control strategy for a powered below-knee prosthesis with ankle and toe. We(More)
This paper presents a bio-inspired below-knee exoskeleton to assist human walking. Different from the passive orthotic devices, the proposed exoskeleton includes powered compliant ankle and toe joints, which can output sufficient power to help the one with exoskeleton relearn normal walking gaits. We first propose a passivity-based dynamic bipedal model to(More)
Active transtibial prostheses that can overcome the deficiencies of passive prostheses are gaining popularity in the research field. In addition to the advantages in joint torque and gait symmetry, terrain adaptation and total weight are other benefits that can help push active prostheses into the commercial market. In this article, we present a lightweight(More)
The future of nondestructive testing lies in the ability to efficiently generate waves in structures without contact. Introduction Nondestructive testing (NDT) of structures and mechanical parts is increasingly receiving attention as the need to monitor the health of aging infrastructure and quality controls on the manufacturing of mechanical parts is(More)