Jinxiong Wu

Learn More
Transparent conductive film on plastic substrate is a critical component in low-cost, flexible, and lightweight optoelectronics. Industrial-scale manufacturing of high-performance transparent conductive flexible plastic is needed to enable wide-ranging applications. Here, we demonstrate a continuous roll-to-roll (R2R) production of transparent conductive(More)
The electron transport properties of a topological insulator Bi2Se3 thin film are studied in Hall-bar geometry. The film with a thickness of 10 nm is grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices are fabricated from the as-grown film directly on the mica substrate. Weak antilocalization and electron-electron interaction(More)
Patterning of high-quality two-dimensional chalcogenide crystals with unique planar structures and various fascinating electronic properties offers great potential for batch fabrication and integration of electronic and optoelectronic devices. However, it remains a challenge that requires accurate control of the crystallization, thickness, position,(More)
OBJECTIVE To explore the effects of cyclooxygenase-2 (COX-2) and its inhibitor valdecoxib in liver fibrosis. METHODS Hepatic fibrosis was induced by carbon tetrachloride for 8 weeks in wild-type and COX-2 knockout mice. And the levels of hyaluronic acid (HA), collagen IV(IV-C), procollagen III(PCIII) and α-smooth muscle actin (α-SMA ) were determined.(More)
Nanostructures of ternary topological insulator (TI) Bi2 Te2 Se are, in principle, advantageous to the manifestation of topologically nontrivial surface states, due to significantly enhanced surface-to-volume ratio compared with its bulk crystals counterparts. Herein, the synthesis of 2D Bi2 Te2 Se crystals on mica via the van der Waals epitaxy method is(More)
Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to(More)
Patterning of high-mobility 2D semiconducting materials with unique layered structures and superb electronic properties offers great potential for batch fabrication and integration of next-generation electronic and optoelectronic devices. Here, a facile approach is used to achieve accurate patterning of 2D high-mobility semiconducting Bi2 O2 Se crystals(More)
2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals' interactions between layers have attracted tremendous interest in recent years. Layered Bi2 Se3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as(More)
High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of(More)
OBJECTIVE To compare the chemical components in Baishao and Chishao water extracts and investigate their effects on the proliferation of rat thoracic aorta smooth muscle cells in vitro. METHODS The contents and chemical structures of monomers separated from the water extracts of Baishao and Chishao were analyzed using high-performance liquid(More)