Learn More
Novel CdS/CdSe core-shell nanorod arrays were fabricated by a chemical bath deposition of CdSe on hydrothermally synthesized CdS nanorods. The CdS rods were hexagonal phase faced and the top of the rod was subulate. After the chemical bath deposition approach, CdS nanorod arrays were encapsulated by a uniform CdSe layer resulting enhanced absorbance and(More)
A series of upconversion luminescent erbium-doped SrTiO(3) (ABO(3)-type) photocatalysts with different initial molar ratios of Sr/Ti have been prepared by a facile polymerized complex method. Er(3+) ions, which were gradually transferred from the A to the B site with increasing Sr/Ti, enabled the absorption of visible light and the generation of high-energy(More)
Multifaceted Cu2O with controlled crystal facet exposure was synthesized via a facile one-step method. It was found that photogenerated electrons prefer to accumulate on high index planes, while holes tend to migrate to {100} facets of a Cu2O polyhedron, leading to efficient charge separation and enhanced photocatalytic reforming of glucose.
Cubic perovskite structure photocatalysts of Na(0.5)La(0.5)TiO(3) and (Na(0.5)La(0.5)TiO(3))(1.00)(LaCrO(3))(0.08) solid solution that consisted of well-defined single-crystal nanocubes were successfully prepared by means of facile and surfactant-free hydrothermal reactions for the first time. The results from different instrumental characterizations and(More)
A series of WO3/g-C3N4 composites with different WO3 contents were prepared via a facile one-pot pyrolysis method, and showed notably enhanced visible-light-driven photocatalytic H2-evolution activities, with the highest rate of 400 μmol h-1 gcat-1 that was 15.0 times of that for pristine g-C3N4. Contents and sizes of WO3 crystallites in the composites were(More)
Owing to the effect of energy band bending, p-type Co3O4 quantum dots sensitized by Eosin Y showed a high and stable photocatalytic activity (∼13,440 μmol h(-1) g(-1)(cat)) for water reduction and hydrogen production under visible-light irradiation without any cocatalyst.
Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical(More)
Explicit coding schemes are proposed to achieve the rate-distortion bound for the Heegard-Berger problem using polar codes. Specifically, a nested polar code construction is employed to achieve the rate-distortion bound for the binary case. The nested structure contains two optimal polar codes for lossy source coding and channel coding, respectively.(More)