Jinwen Li

Learn More
—This paper proposes a low-overhead fault-tolerant deflection routing algorithm, which uses a layer routing table and two TSV state vectors to make efficient routing decision to avoid both TSV and horizontal link faults, for 3D NoC. The proposed switch is implemented in hardware with TSMC 65nm technology, which can achieve 250MHz. Compared with a(More)
Reliability has become a key issue of Networks-on-Chip (NoC) as the CMOS technology scales down to the nanoscale domain. This paper proposes a Fault-on-Neighbor (FoN) aware deflection routing algorithm for NoC which makes routing decision based on the link status of neighbor switches within 2 hops to avoid fault links and switches. Simulation results(More)
We propose a reconfigurable fault-tolerant deflection routing algorithm (FTDR) based on reinforcement learning for NoC. The algorithm reconfigures the routing table through a kind of reinforcement learning---Q-learning using 2-hop fault information. It is topology-agnostic and insensitive to the shape of the fault region. In order to reduce the routing(More)
The purpose of the present study was to design and fabricate endosomal pH-sensitive dual-ligand-modified micellar nanoparticles to achieve enhanced drug delivery to tumor cells and facilitated intracellular drug release. End-group-carboxylated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) and cyclic Arg-Gly-Asp-Tyr-Lys- and anti-prostate specific membrane(More)
A Soil-Plant Analysis Development (SPAD) chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008-2009) using rice plants treated with six different N application(More)