Learn More
Previous investigations have shown that calcitonin gene-related peptide (CGRP) protects gastric mucosa against injury induced by acetylsalicylic acid (ASA) and that rutaecarpine activates vanilloid receptors to evoke CGRP release. In the present study, we examined the protective effects of rutaecarpine on gastric mucosa injury, and explored whether the(More)
Targeted uptake of therapeutic nanoparticles in cell- or tissue-specific manner is an attractive technology since they can offer greater efficacy and reduce cytotoxicity on peripheral healthy tissues. In this study, AS1411 (AP), a DNA aptamer specifically binding to nucleolin that is overexpressed on the plasma membrane of breast cancer (BC) cells, was(More)
Aptamers are single-stranded nucleic acids that selectively bind to target molecules. Most aptamers are obtained through a combinatorial biology technique called SELEX. Since aptamers can be isolated to bind to almost any molecule of choice, can be readily modified at arbitrary positions and they possess predictable secondary structures, this platform(More)
Most previously reported RNA-cleaving DNAzymes require only a single divalent metal ion for catalysis. We recently reported a general trivalent lanthanide-dependent DNAzyme named Ce13d. This work shows that Ce13d requires both Na(+) and a trivalent lanthanide (e.g. Ce(3+)), simultaneously. This discovery is facilitated by the sequence similarity between(More)
In the past few years, graphene oxide (GO) has emerged as a unique platform for developing DNA-based biosensors, given the DNA adsorption and fluorescence-quenching properties of GO. Adsorbed DNA probes can be desorbed from the GO surface in the presence of target analytes, producing a fluorescence signal. In addition to this initial design, many other(More)
Enzymes working in organic solvents are important for analytical chemistry, catalysis, and mechanistic studies. Although a few protein enzymes are highly active in organic solvents, little is known regarding nucleic acid-based enzymes. Herein, we report the first RNA-cleaving DNAzyme, named EtNa, that works optimally in concentrated organic solvents(More)
A previous study of two RNA-cleaving DNAzymes, NaA43 and Ce13d, revealed the possibility of a common Na(+) aptamer motif. Because Na(+) binding to DNA is a fundamental biochemical problem, the interaction between Ce13d and Na(+) was studied in detail by using sensitized Tb(3+) luminescence spectroscopy. Na(+) displaces Tb(3+) from the DNAzyme, and thus(More)
RNA-cleaving DNAzymes provide a unique platform for developing biosensors. However, a majority of the work has been performed in clean buffer solutions, while the activity of some important DNAzymes in biological sample matrices is still under debate. Two RNA-cleaving DNAzymes (17E and 10-23) are the most widely used. In this work, we carefully studied a(More)
It was reported previously that rutaecarpine produced a hypotensive effect in phenol-induced and 2-kidney, 1-clip hypertensive rats. However, the same dose of crude rutaecarpine did not produce significant hypotensive effects when applied to spontaneously hypertensive rats (SHR). In the present study, a different dose of rutaecarpine solid dispersion was(More)
Fluorescent aptamer probes physisorbed on graphene oxide (GO) have recently emerged as a useful sensing platform. A signal is generated by analyte-induced probe desorption. To address nonspecific probe displacement and the false positive signal, we herein report a covalently linked aptamer probe for adenosine triphosphate (ATP) detection. A fluorophore and(More)