Learn More
Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with(More)
This paper introduces a cross-language information retrieval (CLIR) framework that combines the state-of-the-art keyword-based approach with a latent semantic-based retrieval model. To capture and analyze the hidden semantics in cross-lingual settings, we construct latent semantic models that map text in different languages into a shared semantic space. Our(More)
An important problem in multi-label classification is to capture label patterns or underlying structures that have an impact on such patterns. One way of learning underlying structures over labels is to project both instances and labels into the same space where an instance and its relevant labels tend to have similar representations. In this paper, we(More)
Multi-label Bird Species Classification competition provides an excellent opportunity to analyze the effectiveness of acoustic processing and mutlilabel learning. We propose an unsupervised feature extraction and generation approach based on latest advances in deep neural network learning, which can be applied generically to acoustic data. With(More)
Conventional multi-label classification algorithms treat the target labels of the classification task as mere symbols that are void of an inherent semantics. However, in many cases textual descriptions of these labels are available or can be easily constructed from public document sources such as Wikipedia. In this paper, we investigate an approach for(More)
In recent years, we have seen an increasing amount of interest in low-dimensional vector representations of words. Among other things, these facilitate computing word similarity and relatedness scores. The most well-known example of algorithms to produce representations of this sort are the word2vec approaches. In this paper, we investigate a new model to(More)
Digital libraries allow us to organize a vast amount of publications in a structured way and to extract information of user’s interest. In order to support customized use of digital libraries, we develop novel methods and techniques in the Knowledge Discovery in Scientific Literature (KDSL) research program of our graduate school. It comprises several(More)
Traditional machine translation systems often require heavy feature engineering and the combination of multiple techniques for solving different subproblems. In recent years, several endto-end learning architectures based on recurrent neural networks have been proposed. Unlike traditional systems, Neural Machine Translation (NMT) systems learn the(More)
In this paper, we examine a simple approach to zero-shot multi-label text classification, i.e., to the problem of predicting multiple, possibly previously unseen labels for a document. In particular, we propose to use a semantic embedding of label and document words and base the prediction of previously unseen labels on the similarity between the label name(More)