Learn More
Identification and isolation of spermatogonial stem cells (SSCs) are a prerequisite for culture, genetic manipulation, and/or transplantation research. In this study, we established that expression of PGP 9.5 is a spermatogonia-specific marker in porcine testes. The expression pattern of PGP 9.5 in spermatogonia was compared to cell type-specific protein(More)
Fyn and other Src-family kinases play an essential role at several steps during egg activation following fertilization of externally fertilizing species, such as marine invertebrates, fish, and frogs. Recent studies demonstrate that the requirement for Src-family kinases in activation of the mammalian egg is different from lower species, and the objective(More)
The objective of the present study was to determine whether Fyn kinase participated in signaling events during sperm-egg interactions, sperm incorporation, and meiosis II. The functional requirement of Fyn kinase activity in these events was tested through the use of the protein kinase inhibitor SKI-606 (Bosutinib) and by analysis of Fyn-null oocytes.(More)
Asymmetric division of germline stem cells in vertebrates was proposed a century ago; however, direct evidence for asymmetric division of mammalian spermatogonial stem cells (SSCs) has been scarce. Here, we report that ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) is expressed in type A (A(s), A(pr), and A(al)) spermatogonia located at the basement(More)
Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift(More)
FYN kinase is highly expressed in the testis and has been implicated in testis and sperm function, yet specific roles for this kinase in testis somatic and germ cells have not been defined. The purpose of the present investigation was to identify aspects of spermatogenesis, spermiation, or sperm fertilizing capacity that required FYN for normal reproductive(More)
Mammalian spermatogonial stem cells reside on the basement membrane of the seminiferous tubules. The mechanisms responsible for maintenance of spermatogonia at the basement membrane are unclear. Since acetylated alpha-tubulin (Ac-alpha-Tu) is a component of long-lived, stable microtubules and deacetylation of alpha-tubulin enhances cell motility, we(More)
We explored whether exposure of mammalian germ line stem cells to adeno-associated virus (AAV), a gene therapy vector, would lead to stable transduction and transgene transmission. Mouse germ cells harvested from experimentally induced cryptorchid donor testes were exposed in vitro to AAV vectors carrying a GFP transgene and transplanted to germ(More)
Fertilization triggers activation of a series of pre-programmed signal transduction pathways in the oocyte that establish a block to polyspermy, induce meiotic resumption, and initiate zygotic development. Fusion between sperm and oocyte results in rapid changes in oocyte intracellular free-calcium levels, which in turn activate multiple protein kinase(More)
Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role(More)