Learn More
Ion-mediated changes in xylem hydraulic resistance are hypothesized to result from hydrogel like properties of pectins located in the bordered pit membranes separating adjacent xylem vessels. Although the kinetics of the ion-mediated changes in hydraulic resistance are consistent with the swelling/deswelling behavior of pectins, there is no direct evidence(More)
This paper presents a microchip-based system for collecting kinetic time-based information on protein refolding and unfolding. Dynamic protein conformational change pathways were studied in microchannel flow using a microfluidic device. We present a protein-conserving approach for quantifying refolding by dynamically varying the concentration of the(More)
We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 microm wide and 50-200 microm deep microchannels. We find that the sugar front(More)
We elucidate mechanisms for colloidal gelation of attractive nanoemulsions depending on the volume fraction (ϕ) of the colloid. Combining detailed neutron scattering, cryo-transmission electron microscopy and rheological measurements, we demonstrate that gelation proceeds by either of two distinct pathways. For ϕ sufficiently lower than 0.23, gels exhibit(More)
We present a surfactant-free fabrication method for simultaneous generation of monodisperse microspheres with controllable size manner. Droplets that become microspheres by solidification processes are made in a two-step process: capillary rising-induced fluid division and wetting of immiscible fluid in a micromold. Design of the mold geometry and the(More)
These various synthesizing methods can modify their chemical and physical properties such as size, composition, porosity, density, surface charge, and hydrophilicity or hydrophobicity. One of the widely used approaches for the synthesis of spherical polymeric particles is emulsion polymerization. [ 5 ] The most common type of emulsion polymerization is(More)
Polymeric particles are used in a variety of applications such as systems for controlled chemical release, optical materials, chromatographic media, and various biological applications. The physical and chemical properties of polymeric particles, such as their shape, size, porosity, surface charge, and hydrophilicity or hydrophobicity, influence the(More)
This paper presents a microchip-based system for measuring concentrations and dynamic conformational changes in proteins without any use of extrinsic fluorescent labeling. The microchannel flow of protein molecules was integrated with an ultraviolet light-emitting diode (UV-LED, lambda ex = 295 nm) and a photodetector (lambda em = 330 nm). The intrinsic(More)
Cryogenic transmission electron microscopy (cryo-TEM) is a powerful method to image native state morphologies of nanoscale soft and hard objects suspended in solvents. Sample preparation is a critical step toward producing images at length and time scales of interest. We demonstrate a nearly shear-free sample thinning method which simultaneously allows(More)
Nanostructures (vesicles, micelles, bilayers) are important in nanomedicine and biochemical processes. They are agents for encapsulation and eventual release of drugs, flavors, and fragrances. The structural transition from micelles to vesicles through disk-like intermediate states has been demonstrated previously. Here, we disclose a new route for the(More)