Learn More
Most existing person re-identification (re-id) models focus on matching still person images across disjoint camera views. Since only limited information can be exploited from still images, it is hard (if not impossible) to overcome the occlusion, pose and camera-view change, and lighting variation problems. In comparison, video-based re-id methods can(More)
Feature representation and metric learning are two critical components in person re-identification models. In this paper, we focus on the feature representation and claim that hand-crafted histogram features can be complementary to Convolutional Neural Network (CNN) features. We propose a novel feature extraction model called Feature Fusion Net (FFN) for(More)
Person re-identification is an important problem of matching persons across non-overlapping camera views. However, the re-identification is still far from achieving reliable matching. First, many existing approaches are wholebody- based matching, and how body parts could affect and assist the matching is still not clearly known. Second, the learned(More)
  • 1