Learn More
The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological(More)
The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz), spontaneous fluctuations of the blood oxygen level dependent (BOLD) signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many(More)
BACKGROUND Neuroimaging studies have shown that major depressive disorder (MDD) is accompanied by structural and functional abnormalities in specific brain regions and connections; yet, little is known about alterations of the topological organization of whole-brain networks in MDD patients. METHODS Thirty drug-naive, first-episode MDD patients and 63(More)
Recent studies have demonstrated small-world properties in both functional and structural brain networks that are constructed based on different parcellation approaches. However, one fundamental but vital issue of the impact of different brain parcellation schemes on the network topological architecture remains unclear. Here, we used resting-state(More)
Recent research on Alzheimer's disease (AD) has shown that the decline of cognitive and memory functions is accompanied by a disrupted neuronal connectivity characterized by white matter (WM) degeneration. However, changes in the topological organization of WM structural network in AD remain largely unknown. Here, we used diffusion tensor image tractography(More)
Here we utilized resting-state functional magnetic resonance imaging (R-fMRI) to measure the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) in 24 patients with amnestic mild cognitive impairment (aMCI) and 24 age- and sex-matched healthy controls. Two different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz) were(More)
Increasing attention has recently been directed to the applications of pattern recognition and brain imaging techniques in the effective and accurate diagnosis of Alzheimer's disease (AD). However, most of the existing research focuses on the use of single-modal (e.g., structural or functional MRI) or single-level (e.g., brain local or connectivity metrics)(More)
Alzheimer's disease (AD) can be conceptualized as a disconnection syndrome. Both remitted geriatric depression (RGD) and amnestic mild cognitive impairment (aMCI) are associated with a high risk for developing AD. However, little is known about the similarities and differences in the topological patterns of white matter (WM) structural networks between RGD(More)
In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both(More)
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not(More)