• Citations Per Year
Learn More
The ubiquitin C-terminal hydrolase (UCH) is a subfamily of deubiquitinating enzymes, which consists of four members: UCH-L1, UCH-L3, UCH37, and BRCA1-associated protein-1. Although there is growing evidence that UCH enzymes and human malignancies are closely correlated, there have been few studies on UCH37, especially on its interactions with other(More)
Hepatitis delta virus (HDV) small delta antigen (S-HDAg) plays a critical role in virus replication. We previously demonstrated that the S-HDAg phosphorylation occurs on both serine and threonine residues. However, their biological significance and the exact phosphorylation sites of S-HDAg are still unknown. In this study, phosphorylated S-HDAg was detected(More)
Human tissue factor pathway inhibitor-2 (hTFPI-2) is a serine protease inhibitor and its inhibitory activity is enhanced by heparin. The Kunitz domain 3 and Cterminal of hTFPI-2 (hTFPI-2/KD3C), which has the activity toward heparin calcium, have been successfully expressed in Pichia pastoris and purified by SPSepharose and heparin-Sepharose chromatography.(More)
Hepatitis delta virus (HDV) replication requires both the cellular RNA polymerase and one virus-encoded protein, small delta antigen (S-HDAg). S-HDAg has been shown to be a phosphoprotein, but its phosphorylation status is not yet clear. In this study, we employed three methods to address this question. A special two-dimensional gel electrophoresis, namely,(More)
OBJECTIVES To investigate the effect of tissue factor pathway inhibitor-2 (TFPI-2) expression on biological behavior of BeWo and JEG-3 cell lines. MATERIAL AND METHODS The expression of TFPI-2 in BeWo and JEG-3 cells was upregulated by pEGFP-N3-TFPI-2 and downregulated by small interference RNA transfection, confirmed by Western blotting assay and(More)
TFPI-2 (tissue factor pathway inhibitor-2) has recently been recognized as a new tumour suppressor gene. Low expression of this protein in several types of cancers allows for enhanced tumour growth, invasion and metastasis. To investigate the molecular mechanism responsible for the tumour-suppressor effects of TFPI-2, we performed yeast two-hybrid analysis(More)
  • 1