Learn More
Predicting membrane protein type is a meaningful task because this kind of information is very useful to explain the function of membrane proteins. Due to the explosion of new protein sequences discovered, it is highly desired to develop efficient computation tools for quickly and accurately predicting the membrane type for a given protein sequence. Even(More)
Owing to the fact that location information can indicate important functionalities of proteins, developing computational tools to predict protein subcellular localization is one of the most efficient and meaningful tasks with no doubt. The existence methods dealing with prediction of protein subchloroplast locations can only handle the case of single(More)
Prediction of protein subcellular location is a meaningful task which attracted much attention in recent years. A lot of protein subcellular location predictors which can only deal with the single-location proteins were developed. However, some proteins may belong to two or even more subcellular locations. It is important to develop predictors which will be(More)
A new method for spike sorting is proposed which partly solves the overlapping problem. Principal component analysis and subtractive clustering techniques are used to estimate the number of neurons contributing to multi-unit recording. Spike templates (i.e. waveforms) are reconstructed according to the clustering results. A template-matching procedure is(More)
A new spike sorting method based on the support vector machine (SVM) is proposed to resolve the superposition problem. The spike superposition is generally resolved by the template matching. Previous template matching methods separate the spikes through linear classifiers. The classification performance is severely influenced by the background noise(More)
The present work is initiated to investigate whether a defined culture comprising a mixture of three yeast species, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Pichia stipitis can ferment a mixture of sugars to produce bioethanol at rates higher than those achieved by pure cultures of the same. For this purpose, we develop models of single(More)
  • 1