Jingmei Yang

Learn More
The emergence of the computational Grid and the potential for seamless aggregation, integration and interactions has made it possible to conceive a new generation of realistic, scientific and engineering simulations of complex physical phenomena. The inherently heterogeneous and dynamic nature of these application and the Grid presents significant runtime(More)
Dynamic structured adaptive mesh refinement (SAMR) techniques along with the emergence of the computational Grid offer the potential for realistic scientific and engineering simulations of complex physical phenomena. However, the inherent dynamic nature of SAMR applications coupled with the heterogeneity and dynamism of the underlying Grid environment(More)
Dynamic structured adaptive mesh refinement (SAMR) techniques along with the emergence of the computational Grid offer the potential for realistic scientific and engineering simulations of complex physical phenomena. However, the inherent dynamic nature of SAMR applications coupled with the heterogeneity and dynamism of the underlying Grid environment(More)
The development of efficient parallel algorithms for large scale wildfire simulations is a challenging research problem because the factors that determine wildfire behavior are complex. These factors make static parallel algorithms inefficient, especially when large number of processors is used because we cannot predict accurately the propagation of the(More)
  • 1