Jinglai Zhang

  • Citations Per Year
Learn More
Excited-state intramolecular proton transfer (ESIPT) of four imidazole derivatives, 2-(2'-hydroxyphenyl)imidazole (HPI), 2-(2'-hydroxyphenyl)benzimidazole (HPBI), 2-(2'-hydroxyphenyl)-1H-phenanthro[9,10-d]imidazole (HPPI) and 2-(2'-hydroxyphenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (HPPPI), were studied by the sophisticated CASSCF/CASPT2 methodology.(More)
Excited-state intramolecular proton transfer (ESIPT) dynamics of the amino-type hydrogen-bonding compound 2-(2'-aminophenyl)benzothiazole (PBT-NH2) as well as its two derivatives 2-(5'-cyano-2'-aminophenyl)benzothiazole (CN-PBT-NH2) and 2-(5'-cyano-2'-tosylaminophenyl)benzothiazole (CN-PBT-NHTs) were studied by the time-dependent density functional theory(More)
A series of novel bis-Schiff base were synthesized from 1-aryl-3-methyl-4-benzoyl-5-pyrazolones and diethylenetriamine (or triethylenetetramine) as the starting materials. All of these bis-Schiff bases were characterized by means of NMR, IR, and MS. The UV-vis absorption spectra and fluorescent spectra of these bis-Schiff bases were also measured. Moreover,(More)
To elucidate the structural stability and the unfolding dynamics of the animal prion protein, the temperature induced structural evolution of turtle prion protein (tPrPc) and bank vole prion protein (bvPrPc) have been performed with molecular dynamics (MD) simulation. The unfolding behaviors of secondary structures showed that the α-helix was more stable(More)
The geometric and electronic structures, phosphorescence properties and the organic light-emitting diode (OLED) performance of a series of Ir(III) complexes based on bis[(4,6-di-fluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) were investigated by using density functional theory/time-dependent density functional theory (DFT/TD-DFT), including(More)
Enol-keto proton tautomerization and cis-trans isomerization reactions of a novel excited-state intramolecular proton transfer (ESIPT) fluorophore of BTImP and its protonated form (BTImP+) were explored using density functional theory/time-dependent density functional theory (DFT/TD-DFT) computational methods with a B3LYP hybrid functional and the(More)
In commonly studied gold(I) complexes with oligo (o-, p-, or m-phenyleneethynylene) (PE) ligands, an intriguing photophysical behavior is dual emission composed of fluorescence from S1 and phosphorescence from T1 which is dictated by effective intersystem crossing (ISC) process. In order to explore the salient photodynamics of such oligo-PE gold(I)(More)
A new Ir(III) complex (dfpypya)2Ir(pic-OH) (2) is theoretically designed by introduction of a simple hydroxyl group into the ancillary ligand on the basis of (dfpypya)2Ir(pic) (1) with the aim to get the high-efficiency and stable blue-emitting phosphors, where dfpypya is 3-methyl-6-(2',4'-difluoro-pyridinato)pyridazine, pic is picolinate, and pic-OH is(More)
Structures and stabilities of linear carbon chains C2n+1S and C2n+1Cl+ (n=0-4) in their ground states have been investigated by the CCSD and B3LYP approaches. The CASSCF calculations have been used to determine geometries of selected excited states of both isoelectronic series. Linear C2n+1S cluster has a cumulenic carbon framework, whereas its(More)
The B3LYP, CAM-B3LYP, and RCCSD(T) calculations have been used to determine the ground-state geometries of the linear polyyne cations HC(2n)H(+) (n=2-8). The CASSCF method has also been used to optimize the ground and first excited states. The present results indicate that these linear cations generally have an acetylenic structure H-C identical withC-C(More)