Learn More
Data from large-scale protein interaction screens for humans and model eukaryotes have been invaluable for developing systems-level models of biological processes. Despite this value, only a limited amount of interaction data is available for prokaryotes. Here we report the systematic identification of protein interactions for the bacterium Campylobacter(More)
Charting the interactions among genes and among their protein products is essential for understanding biological systems. A flood of interaction data is emerging from high throughput technologies, computational approaches, and literature mining methods. Quick and efficient access to this data has become a critical issue for biologists. Several excellent(More)
Comprehensive protein-interaction mapping projects are underway for many model species and humans. A key step in these projects is estimating the time, cost and personnel required for obtaining an accurate and complete map. Here we modeled the cost of interaction-map completion for various experimental designs. We showed that current efforts may require up(More)
DroID (http://droidb.org/), the Drosophila Interactions Database, is a comprehensive public resource for Drosophila gene and protein interactions. DroID contains genetic interactions and experimentally detected protein-protein interactions curated from the literature and from external databases, and predicted protein interactions based on experiments in(More)
MOTIVATION High-throughput experimental and computational methods are generating a wealth of protein-protein interaction data for a variety of organisms. However, data produced by current state-of-the-art methods include many false positives, which can hinder the analyses needed to derive biological insights. One way to address this problem is to assign(More)
Discovery of the protein interactions that take place within a cell can provide a starting point for understanding biological regulatory pathways. Global interaction patterns among proteins, for example, can suggest new drug targets and aid the design of new drugs by providing a clearer picture of the biological pathways in the neighborhoods of the drug(More)
Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed(More)
The loading acyltransferase (AT) domains of modular polyketide synthases (PKSs) control the choice of starter units incorporated into polyketides and are therefore attractive targets for the engineering of modular PKSs. Here, we report the structural and biochemical characterizations of the loading AT from avermectin modular PKS, which accepts more than 40(More)
PEGylation is a successful approach to improve potency of a therapeutic protein. The improved therapeutic potency is mainly due to the steric shielding effect of PEG. However, the underlying mechanism of this effect on the protein is not well understood, especially on the protein interaction with its high molecular weight substrate or receptor. Here,(More)
Screens for protein-protein interactions using assays like the yeast two-hybrid system have generated volumes of useful data. The protein interactions from these screens have been used to develop a better understanding of the functions of individual proteins, regulatory pathways, molecular machines, and entire biological systems. The value of this data,(More)