Learn More
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities (i.e., total AChE) in human blood are biomarkers for theranostic monitoring of organophosphate neurotoxin-poisoned patients. We developed an ultra-sensitive method to detect the total AChE activity in sub-microliter human whole blood based on in situ induced metal-enhanced fluorescence(More)
Bisphenol A (BPA) usually exists in daily plastic products, as one of the most important endocrine disrupting chemicals. A sensitive surface-enhanced Raman scattering (SERS)-encoded aptasensor for the detection of BPA was developed, for the first time, based on gold nanoparticle-nanorod heteroassemblies. The high electromagnetic enhancement in narrow gaps(More)
Thrombin has been implicated in atherosclerotic disease development. However, thrombin activity detection is currently limited because of the lack of convenient fluorescent probes. We developed a label-free fluorescent method to assay thrombin activity on the basis of a designed peptide probe with a thrombin-cleavable peptide sequence and a cysteine(More)
In this study, we established gold nanorods (Au NRs) core-silver nanoparticles (Ag NPs) satellite assemblies as an ultrasensitive aptamer-based SERS sensor for the detection of Mucin-1, a specific breast cancer marker protein. The limit of detection (LOD) was 4.3 aM and the wide linear range was 0.005-1 fM.
Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a(More)
  • 1