Learn More
Almost instantaneously after the treatment of mouse SCCVII tumor cells with Photofrin-based photodynamic therapy (PDT), a fraction (15-25%) of total cellular heat shock protein 70 (HSP70) became exposed at the cell surface. The level of this surface-expressed HSP70 then remained unchanged for the next 6 hours and persisted at lower levels even at 18 hours(More)
Neutrophils have become recognised as important contributors to the effectiveness of tumour eradication by photodynamic therapy (PDT). In this study, we have used the mouse SCCVII squamous cell carcinoma model to investigate the activity of neutrophils in tumours treated by PDT. Tumour levels of neutrophilic myeloperoxidase (MPO) demonstrated not only a(More)
Phototoxic lesions generated in tumor tissue by photodynamic therapy (PDT) are recognized by the host as a threat to the integrity and homeostasis at the affected site. Among the canonical pathways invoked by the host for dealing with this type of challenge is the activation of the complement system, integrating proteins that serve as molecular sensors of(More)
Tumor treatment by photodynamic therapy (PDT) provokes a host-protective inflammatory and acute-phase response and an immune reaction. Neutrophilia manifested in this context is driven by multiple mediators of neutrophil chemotaxis orchestrated by an activated complement system. Mouse FsaR fibrosarcoma was used in this study to further investigate(More)
A chitosan derivative, glycated chitosan (GC), has been used as an immunostimulant for cancer treatment in laser immunotherapy. The function of GC is to enhance the host immune response after direct cancer cell destruction by a selective laser photothermal interaction. To further test its effects, laser immunotherapy was extended to include several(More)
Poly(adenosine diphosphate-ribose) polymerase (PARP) has recently been characterized as a key regulator of cell death-survival transcriptional programs associated with stress and inflammation. Possible participation of this enzyme in the response of tumors to photodynamic therapy (PDT) was investigated in this study. Immunohistochemical analysis of mouse(More)
A target tumor-derived whole cancer cell therapeutic vaccine was developed based on an in vitro pre-treatment by photodynamic therapy (PDT) and was investigated using a poorly immunogenic tumor model. The vaccine was produced by incubating in vitro expanded mouse squamous cell carcinoma SCCVII cells for 1 h with photosensitizer benzoporphyrin derivative(More)
Inflammation and immunity development are well recognized as responses to tumor treatment by photodynamic therapy (PDT). To demonstrate that another major host response effector process, acute phase response, may be also induced by this cancer treatment modality, the expression of serum amyloid P component (SAP) acknowledged as a hallmark acute phase(More)
Molecules that appear on the surface of tumor cells after their therapy treatment may have important roles either as damage-associated molecular patterns (DAMPs) or signals for phagocytes influencing the disposal of these cells. Treatment of SCCVII and CAL27 cells, models of mouse and human squamous cell carcinoma respectively, by photodynamic therapy (PDT)(More)