Learn More
A novel reduction and pH dual-sensitive nonviral vector for long-circulating and tumor-targeted siRNA delivery is described. The nanomedicine is negatively charged at neutral pH of bloodstream whereas it is positively charged at lower pH of tumor tissue (ca. 6.8). Interlayer crosslinking with disulfide bonds stabilizes the nanomedicine during blood(More)
UNLABELLED The synergetic inhibitory effects on human pancreatic cancer by nanoparticle-mediated siRNA and arsenic therapy were investigated both in vitro and in vivo. Poly(ethylene glycol)-block-poly(L-lysine) were prepared to form siRNA-complexed polyplex and poly(ethylene glycol)-block-poly(DL-lactide) were prepared to form arsenic-encapsulated vesicle,(More)
Ultrasound (US)-sensitive nanobubble (NB) which may utilize the physical power of US exposure to improve delivery efficiency to target cells is emerging as one of the most promising nanocarriers for drug delivery. On the basis of successfully fabricating NBs with the ability of passively accumulating in tumor tissue, in this study we synthesized a(More)
Multimodal imaging and simultaneous therapy is highly desirable because it can provide complementary information from each imaging modality for accurate diagnosis and, at the same time, afford an imaging-guided focused tumor therapy. In this study, indocyanine green (ICG), a near-infrared (NIR) imaging agent and perfect NIR light absorber for laser-mediated(More)
PURPOSE Celastrol, a traditional Chinese medicine, is widely used in anti-inflammation and anti-angiogenesis research. However, the poor water solubility of celastrol restricts its further application. This paper aims to study the effect of celastrol nanoparticles (CNPs) on corneal neovascularization (CNV) and determine the possible mechanism. METHODS To(More)
BACKGROUND Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol(More)
BACKGROUND The triblock copolymers PEG-P(Asp-DIP)-P(Lys-Ca) (PEALCa) of polyethylene glycol (PEG), poly(N-(N',N'-diisopropylaminoethyl) aspartamide) (P(Asp-DIP)), and poly (lysine-cholic acid) (P(Lys-Ca)) were synthesized as a pH-sensitive drug delivery system. In neutral aqueous environment such as physiological environment, PEALCa can self-assemble into(More)
Synthesis of novel double-hydrophilic diblock copolypeptides (BCPs), poly(l-glutamic acid)-block-poly(N-isopropylacrylamide) (PLGnPNm), and their thermoresponsive properties in aqueous solutions at different pH values are described. The diblock copolypeptides were synthesized by a combination of ring-opening polymerization (ROP) of gamma-benzyl-l-glutamate(More)
Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX·HCl)(More)
RNA interfering is a gene therapeutic approach of great potential for cancer. However, tumor-targeted delivery of small interfering RNA (siRNA) solely based on the enhanced permeability and retention effect of nanocarriers is often insufficient. To address this challenge, siRNA encapsulated ultrasound-responsive microbubble (MB) was developed from polymeric(More)