Learn More
The molecular chaperones alphaA- and alphaB-crystallins are important for cell survival and genomic stability and associate with the tubulin cytoskeleton. The mitotic spindle is abnormally assembled in a number of alphaA-/- and alphaB-/- lens epithelial cells. However, no report to date has studied the effect of alpha-crystallin expression on(More)
alphaA-crystallin is a small heat-shock protein expressed preferentially in the lens and is detected during the early stages of lens development. Recent work indicates that the expression of alphaA-crystallin enhances lens epithelial cell growth and resistance to stress conditions. Mutation of the arginine 116 residue to cysteine (R116C) in(More)
alphaA-crystallin (Cryaa/HSPB4) is a small heat shock protein and molecular chaperone that prevents nonspecific aggregation of denaturing proteins. Several point mutations in the alphaA-crystallin gene cause congenital human cataracts by unknown mechanisms. We took a novel approach to investigate the molecular mechanism of cataract formation in vivo by(More)
UV-A radiation produces cataract in animals, enhances photoaging of the lens and skin and increases the phototoxicity of drugs. However, the nature of genes that are activated or repressed after cellular exposure to UV-A radiation remains enigmatic. Because lens epithelial cells exposed to UV-A radiation undergo apoptosis 4 h after exposure to the stress,(More)
PURPOSE Alpha-crystallin is expressed at high levels in the lens in a complex of alphaA- and alphaB-crystallin subunits in 3:1 molar ratios, and is known to maintain the solubility of unpolymerized tubulin and enhance the resistance of microtubules to depolymerization, but its effect on proteins classically associated with microtubule stability (microtubule(More)
  • 1