Learn More
—In hyperspectral image analysis, the principal components analysis (PCA) and the maximum noise fraction (MNF) are most commonly used techniques for dimensionality reduction (DR), referred to as PCA-DR and MNF-DR, respectively. The criteria used by the PCA-DR and the MNF-DR are data variance and signal-to-noise ratio (SNR) which are designed to measure data(More)
— In this paper, we want to study how natural and engineered systems could perform complex optimizations with limited computational and communication capabilities. We adopt a continuous-time dynamical system view rooted in early work on optimization and more recently in network protocol design, and merge it with the dynamic view of distributed averaging(More)
Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we(More)
[15] J. C. Spall, " Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, " IEEE Trans. A deterministic analysis of stochastic approximation with randomized directions, " IEEE Trans. Abstract—This note presents a robust adaptive control approach for a class of time-varying uncertain nonlinear systems in the strict(More)
This paper presents a robust adaptive neural control design for a class of perturbed strict feedback nonlinear system with both completely unknown virtual control coefficients and unknown nonlinearities. The unknown nonlinearities comprise two types of nonlinear functions: one naturally satisfies the "triangularity condition" and can be approximated by(More)
The semantic gap between low-level visual features and high-level semantics has been investigated for decades but still remains a big challenge in multimedia. When "search" became one of the most frequently used applications, "intent gap", the gap between query expressions and users' search intents, emerged. Researchers have been focusing on three(More)