Learn More
Resistive memory is one of the most promising candidates for next-generation nonvolatile memory technology due to its variety of advantages, such as simple structure and low-power consumption. Bipolar resistive switching behavior was observed in epitaxial ZnO nanoislands with base diameters and heights ranging around 30 and 40 nm, respectively. All four(More)
Resistive memory has attracted a great deal of attention as an alternative to contemporary flash memory. Here we demonstrate an interesting phenomenon that multimode resistive switching, i.e. threshold-like, self-rectifying and ordinary bipolar switching, can be observed in one self-assembled single-crystalline ZnO nanoisland with base diameter and height(More)
Graphene is an interesting electronic material. However, flat monolayer graphene does not have significant gap in the electronic density of states, required for a large on-off ratio in logic applications. We propose here a novel device architecture, composed of self-folded carbon nanotube-graphene hybrids, which have been recently observed experimentally in(More)
c Resistive random access memory (RRAM) is one of the most promising nonvolatile memory technologies because of its high potential to replace traditional charge-based memory, which is approaching its scaling limit. To fully realize the potential of the RRAM, it can be important to develop a unique device with current self-rectification, which provides a(More)
We demonstrate current self-complianced and self-rectifying bipolar resistive switching in an Ag-electroded Na-doped ZnO nanowire device. The resistive switching is controlled by the formation and rupture of an Ag nanoisland chain on the surface along the Na-doped ZnO nanowire. Na-doping plays important roles in both the self-compliance and self-rectifying(More)
Unipolar resistive switching memory cells were fabricated using a Mg 0.84 Zn 0.16 O 2−δ thin film, sandwiched between p +-Si (100) substrate and Cr/Au top electrodes. Electrical measurements showed a large memory window and memory window margin of 10 7 and 10 4 , respectively. Furthermore, a wide switching voltage distribution gap of 3.6 V between the(More)
Room temperature ferromagnetism (RTF) is observed in pure copper oxide (CuO) nanoparticles which were prepared by precipitation method with the post-annealing in air without any ferromagnetic dopant. X-ray photoelectron spectroscopy (XPS) result indicates that the mixture valence states of Cu1+ and Cu2+ ions exist at the surface of the particles. Vacuum(More)
Two-dimensional materials have various applications in the next generation nanodevices because of their easy fabrication and particular properties. In this work, we studied the effects of crystalline order on the magnetic properties of ultrathin MoS2 nanosheets. Results indicate that all the fabricated samples show clear room temperature ferromagnetism. The(More)
Vertically aligned undoped ZnO nanotips, nanotubes and nanorods were synthesized on the top facets of Na-doped ZnO nanorods without catalytic assistance under different growth times in a chemical vapor deposition system. The growth mechanism is discussed. The Na-doped nanorods were grown on a ZnO seed layer on Si. The p-type conductivity of the Na-doped(More)
—Write-once–read-many-times memory cells were fabricated using ZnO thin film on p-Si (111) substrate. The OFF-and ON-state resistance ratio is over 10 4 and can be well sustained for more than 100 years and perfectly endure reading cycles of 10 8. The conducting filaments consisting of oxygen vacancies are responsible for the switching mechanism.