Jing-Ling Chen

Learn More
We consider a generalisation of Ekert’s entanglement-based quantum cryptographic protocol where qubits are replaced by quN its (i.e., N -dimensional systems). In order to study its robustness against optimal incoherent attacks, we derive the information gained by a potential eavesdropper during a cloning-based individual attack. In doing so, we generalize(More)
Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a(More)
Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schrödinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the(More)
Einstein-Podolsky-Rosen (EPR) steering describes the ability of one observer to nonlocally "steer" the other observer's state through local measurements. EPR steering exhibits a unique asymmetric property; i.e., the steerability can differ between observers, which can lead to one-way EPR steering in which only one observer obtains steerability in the(More)
A fundamental problem in quantum information is to explore what kind of quantum correlations is responsible for successful completion of a quantum information procedure. Here we study the roles of entanglement, discord, and dissonance needed for optimal quantum state discrimination when the latter is assisted with an auxiliary system. In such process, we(More)
Einstein-Podolsky-Rosen (EPR) steering, a generalization of the original concept of "steering" proposed by Schrödinger, describes the ability of one system to nonlocally affect another system's states through local measurements. Some experimental efforts to test EPR steering in terms of inequalities have been made, which usually require many measurement(More)
Based on the present data, the three CKM angles may construct a spherical surface triangle whose area automatically provides a ”holonomy” phase. By assuming this geometrical phase to be that in the CKM matrix determined by an unknown hidden symmetry, we compare the theoretical prediction on ǫ with data and find they are consistent within error range. We(More)
Chao-Qian Pang, Fu-Lin Zhang, † Yue Jiang, Mai-Lin Liang, and Jing-Ling Chen 4 Physics Department, School of Science, Tianjin University, Tianjin 300072, China School of Science, Tianjin Institute of Urban Construction, Tianjin 300384, China Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China Centre for(More)
In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities both theoretically and experimentally, the known inequalities in the literatures are far from well-developed.(More)