Jing-Jong Shyue

Learn More
Using a vertical titania (TiO(2)) nanotube array, an inverted polymer solar cell was constructed with power conversion efficiency up to 2.71%. In this study, self-organized TiO(2) nanotubes arrays were grown by anodizing Ti metal in glycerol electrolyte containing 0.5 wt% NH(4)F and 1.0 wt% H(2)O with 20 V potential. The tube length (∼100 nm) was controlled(More)
By sputtering organic films with 10 kV, 10 nA C60+ and 0.2 kV, 300 nA Ar+ ion beams concurrently and analyzing the newly exposed surface with X-ray photoelectron spectroscopy, organic thin-film devices including an organic light-emitting diode and a polymer solar cell with an inverted structure are profiled. The chemical composition and the structure of(More)
Siloxane-anchored, self-assembled monolayers (SAMs) on single crystal Si were prepared with a variety of surface functional groups using a single commercially available surfactant (1-bromo-11-(trichlorosilyl)undecane) followed by in situ transformations. Polar (thioacetate and thiol), nonpolar (methyl), acidic (sulfonic and carboxylic), basic (various(More)
Trifunctional uniform nanoparticles comprising a manganese nanocrystal core and a functionalized mesoporous silica shell (MnO@mSiO(2)(Ir)@PEG, where Ir is an emissive iridium complex and PEG is polyethylene glycol) have been strategically designed and synthesized. The T(1) signal can be optimized by forming hollow core (H-MnO@mSiO(2)(Ir)@PEG) via a novel(More)
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C(60)(+) primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the(More)
A buckminsterfullerene (C(60)) ion beam was used for X-ray photoelectron spectrometry depth profiling of various organic thin films. Specimens representing different interfaces in organic light-emitting diode devices, including hole-conducting poly(ethylenedioxythiophene), poly(styrenesulfonic acid) (PEDOT:PSS) thin films on ITO with and without polysilicic(More)
Self-assembled monolayer (SAM)-modified gold nanoparticles can be used to immobilize and transport molecules including DNA and proteins. However, these molecules are usually covalently bound to the surface and chemical reactions are required to cleave and release them. Therefore, immobilizing molecules using electrostatic interactions might be beneficial.(More)
Solution processable fullerene and copolymer bulk heterojunctions are widely used as the active layers of solar cells. In this work, scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to examine the distribution of [6,6]phenyl-C61-butyric acid methyl ester (PCBM) and regio-regular poly(3-hexylthiophene) (rrP3HT) that forms the bulk(More)
We argue that the structure ordering of self-assembled probing molecular monolayers is essential for the reliability and sensitivity of nanowire-based field-effect sensors because it can promote the efficiency for molecular interactions as well as strengthen the molecular dipole field experienced by the nanowires. In the case of monolayers, we showed that(More)
In the absence of an external direction-controlling process, exclusive self-bundled arrays of CdS nanorods are formed using a facile solution-based method involving trioctylphosphine (TOP) and tetradecylphosphonic acids (TDPA) as cosurfactants. CdS self-bundled arrays with an area of as large as 2.0 microm(2) could be obtained. A detailed mechanistic(More)