Learn More
BACKGROUND Ketamine exerts a robust, rapid, and relatively sustained antidepressant effect in patients with major depression. Understanding the mechanisms underlying the intriguing effects of N-methyl d-aspartate (NMDA) antagonists could lead to novel treatments with a rapid onset of action. METHODS The learned helplessness, forced swim, and passive(More)
The cellular basis underlying the complex clinical symptomatology of bipolar disorder and the mechanisms underlying the actions of its effective treatments have not yet been fully elucidated. This study investigated the role of hippocampal synaptic AMPA receptors. We found that chronic administration of the antimanic agents lithium and valproate (VPA)(More)
Molecular mechanisms underlying long-term neurotrophic regulation of synaptic transmission and plasticity are unknown. We report here that long-term treatment of neuromuscular synapses with glial cell line-derived neurotrophic factor (GDNF) potentiates spontaneous and evoked transmitter release, in ways very similar to presynaptic expression of the Ca(2+)(More)
A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named 'customized optimization of metabolic pathways by combinatorial transcriptional engineering(More)
Glutamatergic dysfunction is strongly implicated in schizophrenia and mood disorders. GluA1 knockout (KO) mice display schizophrenia- and depression-related abnormalities. Here, we asked whether GluA1 KO show mania-related abnormalities. KO were tested for behavior in approach/avoid conflict tests, responses to repeated forced swim exposure, and locomotor(More)
OBJECTIVE We sought to evaluate the entire picture of all monocyte chemotactic factors that potentially contribute to adipose tissue macrophage accumulation in obesity. RESEARCH DESIGN AND METHODS Expression and regulation of members in the entire chemokine superfamily were evaluated in adipose tissue and isolated adipocytes of obese versus lean mice.(More)
MicroRNAs (miRNAs) regulate messenger RNA (mRNA) translation in a sequence-specific manner and are emerging as critical regulators of central nervous system plasticity. We found hippocampal miRNA level changes following chronic treatment with mood stabilizers (lithium and valproate (VPA)). Several of these miRNAs were then confirmed by quantitative PCR:(More)
Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal survival and syn-aptic plasticity in the central nervous system (CNS) in an activity-dependent manner, but the underlying mechanisms remain unclear. Here we report that the number of BDNF receptor TrkB on the surface of hip-pocampal neurons can be enhanced by high frequency(More)
In addition to its clinical antimanic effects, lithium also has efficacy in the treatment of depression. However, the mechanism by which lithium exerts its antidepressant effects is unclear. Our objective was to further characterize the effects of peripheral and central administration of lithium in mouse models of antidepressant efficacy as well as to(More)
Increasing data suggest that impairments of cellular plasticity/resilience underlie the pathophysiology of bipolar disorder. A series of microarray studies with validating criteria have recently revealed a common, novel target for the long-term actions of the structurally highly dissimilar mood stabilizers lithium and valproate: BAG-1 [BCL-2 (B-cell(More)