Learn More
Superoxide dismutases (Sods) play very important roles in preventing oxidative damages in aerobic organisms. The nitrogen-fixing heterocystous cyanobacterium Anabaena sp. strain PCC 7120 has two Sod-encoding genes: a sodB, encoding a soluble iron-containing Sod (FeSod), and a sodA, encoding a manganese-containing Sod (MnSod). The FeSod was purified and(More)
Phycobilisomes (PBSs) are light-harvesting antennae that transfer energy to photosynthetic reaction centers in cyanobacteria and red algae. PBSs are supermolecular complexes composed of phycobiliproteins (PBPs) that bear chromophores for energy absorption and linker proteins. Although the structures of some individual components have been determined using(More)
Aldo-keto reductases (AKRs) are a superfamily of enzymes that reduce aldehydes and ketones, and have a broad range of substrates. An AKR gene, sakR1, was identified in the cyanobacterium Synechococcus sp. PCC 7002. A mutant strain with sakR1 inactivated was sensitive to glycerol, a carbon source that can support heterotrophic growth of Synechococcus sp. PCC(More)
Although it is known that calcium is a very important messenger involved in many eukaryotic cellular processes, much less is known about calcium's role in bacteria. CcbP, a Ca(2+)-binding protein, was isolated from the heterocystous cyanobacterium Anabaena sp. PCC 7120, and the ccbP gene was cloned and inactivated. In the absence of combined nitrogen,(More)
PII is an important signal protein for regulation of nitrogen metabolism in bacteria and plants. We constructed a mutant of glnB, encoding PII, in a heterocystous cyanobacterium, Anabaena sp. PCC 7120, with a cre-loxP system. The mutant (MP2alpha) grew more slowly than the wild type under all nitrogen regimens. It excreted a large amount of ammonium when(More)
The hetN gene plays an important role in heterocyst differentiation and pattern formation. An immunoblotting study showed that the hetN gene in Anabaena sp. PCC 7120 was expressed in vegetative cells grown with combined nitrogen. After a switch to a medium without combined nitrogen, hetN expression first declined and was then followed by a rapid increase in(More)
The heterocyst is a specialized cell for nitrogen fixation in some filamentous cyanobacteria. Here we report that a rubrerythrin (RbrA) from Anabaena sp. PCC 7120 functions as a peroxidase in heterocysts and plays an important role in protection of nitrogenase. The electron donor for RbrA in H(2)O(2) reduction is NADPH and the electron transfer from NADPH(More)
The fluorescence emission and absorption spectra of single Anabaena sp. strain PCC7120 cells including vegetative cells and heterocysts have been studied in intact filaments in vivo with confocal microscopy and grating spectrography. The diameters of the excitation and detection areas in the cells are less than 1.0 microm. Heterogeneities within the same(More)
HetR plays a key role in regulation of heterocyst differentiation. When the Cys-48 residue of the HetR from Anabaena sp. PCC 7120 was replaced with an Ala residue, the mutant HetR (HetR(C48A)) could not dimerize, indicating that HetR forms a homodimer through a disulfide bond. The Anabaena strain C48, containing the hetRc48a gene, could not produce HetR(More)
The rubA gene was insertionally inactivated in Synechococcus sp. PCC 7002, and the properties of photosystem I complexes were characterized spectroscopically. X-band EPR spectroscopy at low temperature shows that the three terminal iron-sulfur clusters, F(X), F(A), and F(B), are missing in whole cells, thylakoids, and photosystem (PS) I complexes of the(More)