Learn More
The robust asymptotic stability problem of genetic regulatory networks with time-varying delays is investigated. Based on a piecewise analysis method, the variation interval of the time delay is firstly divided into two subintervals, and then the convexity property of the matrix inequality and the free weighting matrix method are fully used in this paper.(More)
In this paper, two related problems, global asymptotic stability (GAS) and global robust stability (GRS) of neural networks with time delays, are studied. First, GAS of delayed neural networks is discussed based on Lyapunov method and linear matrix inequality. New criteria are given to ascertain the GAS of delayed neural networks. In the designs and(More)
Both exponential stability and periodic oscillatory solution of bidirectional associative memory (BAM) networks with axonal signal transmission delays are considered by constructing suitable Lyapunov functional and some analysis techniques. Some simple sufficient conditions are given ensuring the global exponential stability and the existence of periodic(More)
In this paper, the existence and uniqueness of the equilibrium point and its global asymptotic stability are discussed for a general class of recurrent neural networks with time-varying delays and Lipschitz continuous activation functions. The neural network model considered includes the delayed Hopfield neural networks, bidirectional associative memory(More)
In this paper, we propose and study a general array model of coupled delayed neural networks with hybrid coupling, which is composed of constant coupling, discrete-delay coupling, and distributed-delay coupling. Based on the Lyapunov functional method and Kronecker product properties, several sufficient conditions are established to ensure global(More)
This paper is concerned with the problem of exponential stability for a class of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays and known or unknown parameters. The jumping parameters are determined by a continuous-time, discrete-state Markov chain, and the mixed time delays under consideration comprise both(More)
In this paper, the problem of exponential stability is investigated for a class of stochastic neural networks with both Markovian jump parameters and mixed time delays. The jumping parameters are modeled as a continuous-time finite-state Markov chain. Based on a Lyapunov-Krasovskii functional and the stochastic analysis theory, a linear matrix inequality(More)