Learn More
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you(More)
The method of alternating projections and the method of subspace corrections are general iterative methods that have a variety of applications. The method of alternating projections, first proposed by von Neumann (1933) (see [31]), is an algorithm for finding the best approximation to any given point in a Hilbert space from the intersection of a finite(More)
A two-grid discretization scheme is proposed for solving eigenvalue problems, including both partial differential equations and integral equations. With this new scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid, and the solution of a linear algebraic system on the fine(More)
A simple technique is given in this paper for the construction and analysis of a class of finite element discretizations for convection-diffusion problems in any spatial dimension by properly averaging the PDE coefficients on element edges. The resulting finite element stiffness matrix is an M -matrix under some mild assumption for the underlying (generally(More)
This paper gives some global and uniform convergence estimates for a class of subspace correction (based on space decomposition) iterative methods applied to some unconstrained convex optimization problems. Some multigrid and domain decomposition methods are also discussed as special examples for solving some nonlinear elliptic boundary value problems.
An abstract framework ofauxiliary space method is proposed and, as an application, an optimal multigrid technique is developed for general unstructured grids. The auxiliary space method is a (nonnested) two level preconditioning technique based on a simple relaxation scheme (smoother) and an auxiliary space (that may be roughly understood as a nonnested(More)
A widely used electrostatics model in the biomolecular modeling community, the nonlinear Poisson–Boltzmann equation, along with its finite element approximation, are analyzed in this paper. A regularized Poisson–Boltzmann equation is introduced as an auxiliary problem, making it possible to study the original nonlinear equation with delta distribution(More)