Learn More
Model building in machine learning is an iterative process. The performance analysis and debugging step typically involves a disruptive cognitive switch from model building to error analysis, discouraging an informed approach to model building. We present ModelTracker, an interactive visualization that subsumes information contained in numerous traditional(More)
We demonstrate the value of collecting semantic parse labels for knowledge base question answering. In particular, (1) unlike previous studies on small-scale datasets, we show that learning from labeled semantic parses significantly improves overall performance, resulting in absolute 5 point gain compared to learning from answers, (2) we show that with an(More)
Performance analysis is critical in applied machine learning because it influences the models practitioners produce. Current performance analysis tools suffer from issues including obscuring important characteristics of model behavior and dissociating performance from data. In this work, we present Squares, a performance visualization for multiclass(More)
Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The learning machine leverages big data to find examples that maximize the training value of its interaction with the teacher. When the(More)
The current processes for building machine learning systems require practitioners with deep knowledge of machine learning. This significantly limits the number of machine learning systems that can be created and has led to a mismatch between the demand for machine learning systems and the ability for organizations to build them. We believe that in order to(More)
In text classification, dictionaries can be used to define human-comprehensible features. We propose an improvement to dictionary features called smoothed dictionary features. These features recognize document contexts instead of ngrams. We describe a principled methodology to solicit dictionary features from a teacher, and present results showing that(More)
Qualitative coding offers the potential to obtain deep insights into social media, but the technique can be inconsistent and hard to scale. Researchers using qualitative coding impose structure on unstructured data through “codes” that represent categories for analysis. Our visual analytics interface, Aeonium, supports human insight in(More)
The current processes for building machine learning systems require practitioners with deep knowledge of machine learning. This significantly limits the number of machine learning systems that can be created and has led to a mismatch between the demand for machine learning systems and the ability for organizations to build them. We believe that in order to(More)
  • 1