Jin-Woo Bryan Oh

Learn More
In nature, helical macromolecules such as collagen, chitin and cellulose are critical to the morphogenesis and functionality of various hierarchically structured materials. During tissue formation, these chiral macromolecules are secreted and undergo self-templating assembly, a process whereby multiple kinetic factors influence the assembly of the incoming(More)
Many materials in nature change colours in response to stimuli, making them attractive for use as sensor platform. However, both natural materials and their synthetic analogues lack selectivity towards specific chemicals, and introducing such selectivity remains a challenge. Here we report the self-assembly of genetically engineered viruses (M13 phage) into(More)
We report novel phage-based array chips that are optically readable for cell proliferation and morphology assays. Using M13 phages that were engineered to display RGD on its major coat proteins and/or immobilize FGFb on its minor coat proteins, we prepared arrays of phage spot matrices composed of self-assembled nanofibrous network structures. We cultured(More)
Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique(More)
This study concentrates on the development of biodegradable nanofiber membranes with controlled drug release to ensure reduced tissue adhesion and accelerated healing. Nanofibers of poly(lactic-co-glycolic acid) (PLGA) loaded with epigallocatechin-3-O-gallate (EGCG), the most bioactive polyphenolic compound in green tea, were electrospun. The(More)
In biomedical applications, there is a need for tissue engineering scaffolds to promote and control cellular behaviors, including adhesion, proliferation and differentiation. In particular, the initial adhesion of cells has a great influence on those cellular behaviors. In this study, we concentrate on developing cell-adhesive substrates applicable for(More)
BACKGROUND M13 bacteriophages can be readily fabricated as nanofibers due to non-toxic bacterial virus with a nanofiber-like shape. In the present study, we prepared hybrid nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 bacteriophages which were genetically modified to display the RGD peptide on their surface (RGD-M13 phage). (More)
The effect of trap density on the space charge formation of polymeric photorefractive (PR) composites was studied using the modified Schildkraut differential equation. The densities of electrons, holes, and traps, as well as the rates of generation, recombination, trapping, and detrapping are examined. The steady-state and temporal behaviors of photocurrent(More)
Heteroleptic ruthenium complexes cis-[Ru(H2dcbpy)(L)(NCS)2], where H2dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine and L is 4-(4-(N,N-di-(p-hexyloxyphenyl)-amino)styryl)-4'-methyl-2,2'-bipyridine (Rut-A) or 4-(4'-(3,6-dihexyloxycarbazole-9-yl)-styryl)-4'-methyl-2,2'-bipyridine (Rut-B), have been synthesized and characterized by NMR, UV-Vis spectroscopy,(More)