Jin-Tsong Jeng

Learn More
Support vector regression (SVR) employs the support vector machine (SVM) to tackle problems of function approximation and regression estimation. SVR has been shown to have good robust properties against noise. When the parameters used in SVR are improperly selected, overfitting phenomena may still occur. However, the selection of various parameters is not(More)
In this paper, the annealing robust radial basis function networks (ARRBFNs) are proposed to improve the problems of the robust radial basis function networks (RBFNs) for function approximation with outliers. Firstly, a support vector regression (SVR) approach is proposed to determine an initial structure of ARRBFNs in this paper. Because an SVR approach is(More)
In this paper, we propose the approximate transformable technique, which includes the direct transformation and indirect transformation, to obtain a Chebyshev-Polynomials-Based (CPB) unified model neural networks for feedforward/recurrent neural networks via Chebyshev polynomials approximation. Based on this approximate transformable technique, we have(More)
To select the hyperparameters of the support vector machine for regression (SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian kernel function and the epsilon value of Vapnik's epsilon-insensitive loss function. The proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm and a repeated SVR(More)
This paper introduces a new structure of radial basis function networks (RBFNs) that can successfully model symbolic interval-valued data. In the proposed structure, to handle symbolic interval data, the Gaussian functions required in the RBFNs are modified to consider interval distance measure, and the synaptic weights of the RBFNs are replaced by linear(More)
The back propagation (BP) algorithm for function approximation is multilayer feed-forward perceptions to learn parameters from sampling data. The BP algorithm uses the least squares method to obtain a set of weights minimizing the object function. One of main issues on the BP algorithm is to deal with data sets having variety of data distributions and bound(More)