Learn More
Support vector regression (SVR) employs the support vector machine (SVM) to tackle problems of function approximation and regression estimation. SVR has been shown to have good robust properties against noise. When the parameters used in SVR are improperly selected, overfitting phenomena may still occur. However, the selection of various parameters is not(More)
In this paper, we propose the approximate transformable technique, which includes the direct transformation and indirect transformation, to obtain a Chebyshev-Polynomials-Based (CPB) unified model neural networks for feedforward/recurrent neural networks via Chebyshev polynomials approximation. Based on this approximate transformable technique, we have(More)
To select the hyperparameters of the support vector machine for regression (SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian kernel function and the epsilon value of Vapnik's epsilon-insensitive loss function. The proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm and a repeated SVR(More)
This paper introduces a new structure of radial basis function networks (RBFNs) that can successfully model symbolic interval-valued data. In the proposed structure, to handle symbolic interval data, the Gaussian functions required in the RBFNs are modified to consider interval distance measure, and the synaptic weights of the RBFNs are replaced by linear(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Back propagation algorithm Fuzzy neural networks Fuzzy clustering Robust(More)
guaranteed to find a global extremism. Another, the lease square (LS) versions of SVM, called as LS-SVM, is also investigated for classification [3] and regression (LS-SVMR) [4]. In these LS-SVM formulations on works with equality instead of inequality constraints and a sum squared error cost function as it is frequently used in the training of traditional(More)