Learn More
Seasonal phenotypic flexibility in small birds produces a winter phenotype with elevated maximum cold-induced metabolic rates (=summit metabolism, Msum). Temperature and photoperiod are candidates for drivers of seasonal phenotypes, but their relative impacts on metabolic variation are unknown. We examined photoperiod and temperature effects on Msum, muscle(More)
Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many birds. In the present study, seasonal adjustments in several physiological, hormonal, and(More)
BACKGROUND Long terminal repeat retrotransposons (LTR elements) are ubiquitous Eukaryotic TEs that transpose through RNA intermediates. Accounting for significant proportion of many plant genomes, LTR elements have been well established as one of the major forces underlying the evolution of plant genome size, structure and function. The accessibility of(More)
Survival of small birds in fluctuating environments is facilitated by seasonal metabolic and morphological flexibility. Chinese bulbuls Pycnonotus sinensis show winter increases in resting metabolic rate (RMR), nutritional organ masses, and liver and muscle cellular aerobic capacity relative to summer. In this study, we build on these findings from previous(More)
Acclimatization to different ambient conditions is an essential prerequisite for survival of small passerine birds. Long-distance migration and winter acclimatization induce similar physiological and biochemical adjustments in passerines. To understand metabolic adaptations, the resting metabolic rate (RMR), the thermogenic properties of mitochondria in(More)
Phenotypic flexibility of various morphological and physiological characters is widespread in animals. Resident endothermic animals of temperate climates provide a natural experiment in phenotypic flexibility. In this study, we took an integrative approach to assess seasonal and geographic influences on metabolism in Eurasian tree sparrows (Passer(More)
Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these(More)
Cold acclimation in birds involves a comprehensive array of physiological and morphological adjustment ranging from changes in aerobic enzyme activity to metabolic rate and organ mass. In the present study, we investigated phenotypic variation in thermogenic activity in the hwamei (Garrulax canorus) under normal (35°C) or cold (15°C) ambient temperature(More)