Learn More
Tag identification time is handled as an important factor because the performance of RFID system is decided by this factor dominantly. To improve this ability, many anti-collision algorithms have been applied on RFID system. ALOHA based anti-collision algorithms are simple and they have superior anti-collision ability. But, it has disadvantage that the(More)
One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated(More)
Chemical synapses are important components of the large-scaled neural network in the hippocampus of the mammalian brain, and a change in their weight is thought to be in charge of learning and memory. Thus, the realization of artificial chemical synapses is of crucial importance in achieving artificial neural networks emulating the brain's functionalities(More)
The two-dimensional electron gas (2DEG) at the interface between insulating LaAlO3 and SrTiO3 is intriguing both as a fundamental science topic and for possible applications in electronics or sensors. For example, because the electrical conductance of the 2DEG at the LaAlO3/SrTiO3 interface can be tuned by applying an electric field, new electronic devices(More)
Manipulation of electrons in a solid through transmitting, storing, and switching is the fundamental basis for the microelectronic devices. Recently, the electroresistance effect in the ferroelectric capacitors has provided a novel way to modulate the electron transport by polarization reversal. Here, we demonstrate a giant electroresistive ferroelectric(More)
Accuracy of the Harman measurement largely depends on the heat transfer between the sample and its surroundings, so-called parasitic thermal effects (PTEs). Similar to the material evaluations, measuring thermoelectric modules (TEMs) is also affected by the PTEs especially when measuring under atmospheric condition. Here, we study the correction methods for(More)
Although the Harman method evaluates the thermoelectric figure-of-merit in a rapid and simple fashion, the accuracy of this method is affected by several electrical and thermal extrinsic factors that have not been thoroughly investigated. Here, we study the relevant extrinsic effects and a correction scheme for them. A finite element model simulates the(More)
Interfaces, such as grain boundaries in a solid material, are excellent regions to explore novel properties that emerge as the result of local symmetry-breaking. For instance, at the interface of a layered-chalcogenide material, the potential reconfiguration of the atoms at the boundaries can lead to a significant modification of the electronic properties(More)
Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a(More)
At present, the generation of heterostructures with two dimensional electron gas (2DEG) in amorphous LaAlO3 (a-LAO)/SrTiO3 (STO) has been achieved. Herein, we analysed thermal stability of 2DEG at a-LAO/STO interfaces in comparison with 2DEG at crystalline LaAlO3 (c-LAO)/STO interfaces. To create 2DEG at LAO/STO interface, regardless of growing temperature(More)