Learn More
Wound healing is essential for maintaining the integrity of multicellular organisms. In every species studied, disruption of an epithelial layer instantaneously generates endogenous electric fields, which have been proposed to be important in wound healing. The identity of signalling pathways that guide both cell migration to electric cues and(More)
Disrupted-in-Schizophrenia-1 (DISC1), identified by positional cloning of a balanced translocation (1;11) with the breakpoint in intron 8 of a large Scottish pedigree, is associated with a range of neuropsychiatric disorders including schizophrenia. To model this mutation in mice, we have generated Disc1(tr) transgenic mice expressing 2 copies of truncated(More)
Directed cell migration is essential for tissue formation, inflammation, and wound healing. Chemotaxis plays a major role in these situations and is underpinned by asymmetric intracellular signaling. Endogenous electric fields (EFs) are common where cell movement occurs, such as in wound healing, and cells respond to electric field gradients by reorienting(More)
The mechanisms by which cancer cells migrate to metastasise are not fully understood. Breast cancers are accompanied by electrical depolarisation of tumour epithelial cells. The electrical changes can be detected on the skin and are used to differentiate malignant from benign breast tumours. Could the electrical signals play a role in metastasis by(More)
Mechanisms that guide directional migration of neuroblasts from the subventricular zone (SVZ) are not well understood. We report here that endogenous electric currents serve as a guidance cue for neuroblast migration. We identify the existence of naturally occurring electric currents (1.5±0.6 μA/cm(2), average field strength of ∼3 mV/mm) along the rostral(More)
Breaking the balance between proliferation and differentiation in animal cells can lead to cancer, but the mechanisms maintaining this balance remain largely undefined. The calcium activated chloride channel A1 (CLCA1) is a member of the calcium sensitive chloride conductance family of proteins and is expressed mainly in the colon, small intestine and(More)
It has long been known that cells can be induced to migrate by the application of small d.c. electric fields (EFs), a phenomenon referred to as galvanotaxis. We recently reported some significant effects of electric signals of physiological strength in guiding cell migration and wound healing. We present here protocols to apply an EF to cells or tissues(More)
Embryonic stem cells (ESCs) promise an unlimited source of defined cells for cell transplantation therapy, while protocols for derivation of homogeneous populations of desirable cell types are yet to be developed and/or refined. Gamma aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system, and disturbed GABAergic(More)
BACKGROUND Chloride channel accessory 1 (CLCA1) is a CLCA protein that plays a functional role in regulating the differentiation and proliferation of colorectal cancer (CRC) cells. Here we investigated the relationship between the level of CLCA1 and the prognosis of CRC. METHODS First, the level of CLCA1 was detected quantitatively in normal and cancerous(More)
Endogenous electrical fields (EFs) at corneal and skin wounds send a powerful signal that directs cell migration during wound healing. This signal therefore may serve as a fundamental regulator directing cell polarization and migration. Very little is known of the intracellular and molecular mechanisms that mediate EF-induced cell polarization and(More)