Learn More
Amyloid-β (Aβ) plaque deposition in specific brain regions is a pathological hallmark of Alzheimer's disease. However, the mechanism underlying the regional vulnerability to Aβ deposition in Alzheimer's disease is unknown. Herein, we provide evidence that endogenous neuronal activity regulates the regional concentration of interstitial fluid (ISF) Aβ, which(More)
Methylprednisolone (MP) is used to treat a variety of neurological disorders involving white matter injury, including multiple sclerosis, acute disseminated encephalomyelitis, and spinal cord injury (SCI). Although its mechanism of action has been attributed to anti-inflammatory or antioxidant properties, we examined the possibility that MP may have direct(More)
One of the pathological hallmarks of Alzheimer disease is the accumulation of amyloid plaques in the extracellular space in the brain. Amyloid plaques are primarily composed of aggregated amyloid β peptide (Aβ), a proteolytic fragment of the transmembrane amyloid precursor protein (APP). For APP to be proteolytically cleaved into Aβ, it must be internalized(More)
Background: Alzheimer's disease (AD) is characterized by the presence of early intraneuronal deposits of amyloid-b 42 (Ab42) that precede extracellular amyloid deposition in vulnerable brain regions. It has been hypothesized that endosomal/ lysosomal dysfunction might be associated with the pathological accumulation of intracellular Ab42 in the brain. Our(More)
It has been postulated that the development of amyloid plaques in Alzheimer's disease (AD) may result from an imbalance between the generation and clearance of the amyloid-beta peptide (Abeta). Although familial AD appears to be caused by Abeta overproduction, sporadic AD (the most prevalent form) may result from impairment in clearance. Recent evidence(More)
The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger(More)
In sporadic Alzheimer's disease (AD), impaired Aβ removal contributes to elevated extracellular Aβ levels that drive amyloid plaque pathogenesis. Extracellular proteolysis, export across the blood-brain barrier, and cellular uptake facilitate physiologic Aβ clearance. Astrocytes can take up and degrade Aβ, but it remains unclear whether this function is(More)
Serotonin signaling suppresses generation of amyloid-β (Aβ) in vitro and in animal models of Alzheimer's disease (AD). We show that in an aged transgenic AD mouse model (APP/PS1 plaque-bearing mice), the antidepressant citalopram, a selective serotonin reuptake inhibitor, decreased Aβ in brain interstitial fluid in a dose-dependent manner. Growth of(More)
BACKGROUND Definitive diagnosis of Alzheimer disease (AD) can be made only by histopathological examination of brain tissue, prompting the search for premortem disease biomarkers. We sought to determine if the novel brain injury biomarker, visinin-like protein 1 (VLP-1), is altered in the CSF of AD patients compared with controls, and to compare its values(More)
BACKGROUND The diagnosis of diseases leading to brain injury, such as stroke, Alzheimer disease, and Parkinson disease, can often be problematic. In this study, we pursued the discovery of biomarkers that might be specific and sensitive to brain injury. METHODS We performed gene array analyses on a mouse model to look for biomarkers that are both(More)