Learn More
Full automation with high purity for circulating tumor cell (CTC) isolation has been regarded as a key goal to make CTC analysis a "bench-to-bedside" technology. Here, we have developed a novel centrifugal microfluidic platform that can isolate the rare cells from a large volume of whole blood. To isolate CTCs from whole blood, we introduce a disc device(More)
A fully automated point-of-care testing (POCT) system with a surface acoustic wave (SAW) immunosensor was developed for rapid and sensitive detection of cardiac troponin I (cTnI) in body fluid (plasma and whole blood). The assay, based on gold nanoparticle sandwich immunoassay and subsequent gold staining, was performed on the SAW immunosensor packaged(More)
Circulating tumor cells (CTCs), though exceedingly rare in the blood, are nonetheless becoming increasingly important in cancer diagnostics. Despite this keen interest and the growing number of potential clinical applications, there has been limited success in developing a CTC isolation platform that simultaneously optimizes recovery rates, purity, and cell(More)
Isolation of circulating tumor cells (CTCs) by size exclusion can yield poor purity and low recovery rates, due to large variations in size of CTCs, which may overlap with leukocytes and render size-based filtration methods unreliable. This report presents a very sensitive, selective, fast, and novel method for isolation and detection of CTCs. Our assay(More)
Circulating tumor cells (CTCs) are rare cells and the presence of these cells may indicate a poor prognosis and a high potential for metastasis. Despite highly promising clinical applications, CTCs have not been investigated thoroughly, due to many technical limitations faced in their isolation and identification. Current CTC detection techniques mostly(More)
Using hybrid nanoparticles (HNPs), we demonstrate simultaneous capture, in situ protein expression analysis, and cellular phenotype identification of circulating tumor cells (CTCs). Each HNP consists of three parts: (i) antibodies that bind specifically to a known biomarker for CTCs, (ii) a quantum dot that emits fluorescence signals, and (iii) biotinylated(More)
In this paper, an emergency telemedicine system was designed for the transmission of real-time multimedia for remote consultation, including radiological images, patient records, video-conferencing, full-quality video, ECG, BP, respiration, temperature, SpO(2), systolic and diastolic pressures and heart rate. The standardized, modular, software-based design(More)
  • 1