Jin-Heong Yim

Learn More
Fast pyrolysis of sewage sludge was carried out under different reaction conditions, and its effects on bio-oil characteristics were studied. The effect of metal oxide catalysts on the removal of chlorine in the bio-oil was also investigated for four types of catalysts. The optimal pyrolysis temperature for bio-oil production was found to be 450 degrees C,(More)
Fast pyrolysis of Miscanthus was investigated in a bench-scale fluidized bed reactor for production of bio-oil. Process conditions were varied for temperature (350-550 degrees C), particle size (0.3-1.3mm), feed rate and gas flow rate. Pyrolysis temperature was the most influential parameter upon the yield and properties of bio-oil. The highest bio-oil(More)
The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction(More)
In this study, 1,2-dichlorobenzene (DCB), an important precursor of PCDDs and PCDFs, was chosen as a suitable model compound for the catalyzed deep oxidation of dioxin. The recently developed mesoporous materials from zeolites (MMZ) were used for the first time as a support for an oxidation catalyst. The catalytic oxidation of 1,2-dichlorobenzene over(More)
A highly ordered nanoporous aluminosilicate (MMZ(USY)) was synthesized using commercially available zeolite USY as the framework source and cetyltrimethylammonium bromide as the template. The aluminosilicate was characterized by XRD, N2 adsorption, ICP-AES and TPD. The catalytic performance of the MMZ(USY) material in the conversion of bio-oil was compared(More)
The catalytic cracking of oilsand bitumen was performed over nanoporous materials at atmospheric conditions. The yield of gas increased with application of nanoporous catalysts, with the catalytic conversion to gas highest for Meso-MFI. The cracking activity seemed to correlate with pore size rather than weak acidity or surface area.
The objective of this study is to evaluate the catalytic potential of metal oxide/MCM-41 catalysts in dicyclopentadiene oligomerization/dicyclopentadiene oligomer isomerization. Molybdenum oxide, tungsten oxide, and titanium oxide were loaded on MCM-41 using the modified atomic layer deposition method. The amount of the acid site with weak strength has been(More)
Nanoporous zeolite MFI was prepared by using HClO4 as a promoter. A significant proportion of the synthesized zeolite MFI nanoparticles exhibited nanoporous characteristics. Although the synthesis of the zeolite MFI was completed within 6 h, the crystallinity of all the zeolite MFI was shown to be high. The synthesis time of approximately 6 h used in this(More)
The effect of nanopore in mesoporous materials confining (n-BuCp),ZrCl2 and methylaluminoxane (MAO) on ethylene-1-hexene and ethylene-1-octene copolymerization was investigated on the basis of the copolymerization results, and the analysis of the supported catalyst and the copolymers. SBA-15 and MCM-41 together with amorphous silica were employed as(More)