Learn More
Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, although the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3; also known(More)
Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4-22 (Δe4-22). Both(More)
Age-related macular degeneration (AMD) is a leading cause of visual dysfunction worldwide. Amyloid β (Aβ) peptides, Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), have been implicated previously in the AMD disease process. Consistent with a pathogenic role for Aβ, we show here that a mouse model of AMD that invokes multiple factors that are known to modify AMD risk (aged(More)
The diffusible messenger nitric oxide (NO) acts in the brain largely through activation of soluble guanylyl cyclase (sGC), a heterodimer comprising alpha and beta subunits. We used immunohistochemistry to study the distribution of both sGC subunits in the brain of adult rats. alpha and beta subunits gave similar widespread staining throughout the CNS, which(More)
Age-related macular degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with Alzheimer's disease (AD) including extracellular deposits containing amyloid-beta (Abeta) peptides. Immunotherapy targeting the Abeta protein has been investigated as a potential treatment for AD. Here, we(More)
The nitric oxide (NO)-cGMP pathway is implicated in modulation of visual information processing in the retina. Despite numerous functional studies of this pathway, information about the retinal distribution of the major downstream effector of NO, soluble guanylyl cyclase (sGC), is very limited. In the present work, we have used immunohistochemistry and(More)
Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a key role in N-methyl-D-aspartate (NMDA) receptor-dependent long-term synaptic plasticity; its location is critical for signal transduction, and may provide clues that further elucidate its function. We therefore examined the subcellular localization of CaMKII in CA1 stratum radiatum of adult(More)
Nitric oxide (NO) has been implicated in pain processing at the spinal level, but the mechanisms mediating its effects remain unclear. In the present work, we studied the organization of the major downstream effector of NO, soluble guanylyl cyclase (sGC), in the superficial dorsal horn of rat. Almost all neurokinin 1 (NK1) receptor-positive neurons in(More)
Soluble guanylyl cyclase (sGC), the principle "receptor" for nitric oxide (NO), catalyzes the formation of cyclic guanosine monophosphate (cGMP), an intracellular second messenger. Studies in invertebrates have shown that the NO/cGMP pathway is involved in several aspects of neural development, including neuronal migration, dendritic and axonal outgrowth,(More)
Immediately after birth, skeletal muscle must undergo an enormous period of growth and differentiation that is coordinated by several intertwined growth signaling pathways. How these pathways are integrated remains unclear but is likely to involve skeletal muscle contractile activity and calcium (Ca(2+)) signaling. Here, we show that Ca(2+) signaling(More)