Learn More
ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300 degrees C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400 degrees C. Neutron and x-ray total scattering data(More)
Using Brillouin scattering, we measured the single-crystal elastic constants (C(ij)'s) of a prototypical metal-organic framework (MOF): zeolitic imidazolate framework (ZIF)-8 [Zn(2-methylimidazolate)(2)], which adopts a zeolitic sodalite topology and exhibits large porosity. Its C(ij)'s under ambient conditions are (in GPa) C(11)=9.522(7), C(12)=6.865(14),(More)
We report a new 2-D inorganic-organic framework material, MnDMS [Mn 2,2-dimethylsuccinate], featuring weakly bound hybrid layers in its bulk crystals that can be readily exfoliated into nanosheets via ultrasonication. The fully exfoliated hybrid nanosheets correspond to a unilamellar thickness of about 1 nm, while the partially exfoliated nanosheets(More)
We present an unambiguous identification of low-frequency terahertz vibrations in the archetypal imidazole-based metal-organic framework (MOF) materials: ZIF-4, ZIF-7, and ZIF-8, all of which adopt a zeolite-like nanoporous structure. Using inelastic neutron scattering and synchrotron radiation far-infrared absorption spectroscopy, in conjunction with(More)
We report the reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4, [Zn(Im)(2)]). This occurs irrespective of pore occupancy and takes place via a novel high pressure phase (ZIF-4-I) when solvent molecules are present in the pores. A significant reduction in bulk modulus upon framework evacuation is also observed for both(More)
We report the concept underpinning the facile nanoconfinement of a bulky luminous guest molecule in the pores of a metal-organic framework (MOF) host, which yields a hybrid host ⊃ guest nanomaterial with tunable opto-electronic characteristics and enhanced photostability. Utilizing an in situ host-guest confinement strategy enabled by molecular(More)
Outstanding functional tunability underpinning metal-organic framework (MOF) confers a versatile platform to contrive next-generation chemical sensors, optoelectronics, energy harvesters, and converters. A rare exemplar of a porous 2D nanosheet material constructed from an extended 3D MOF structure is reported. A rapid supramolecular self-assembly(More)
We determine the nonlinear mechanical behavior of a prototypical zeolitic imidazolate framework (ZIF-8) along two modes of mechanical failure in response to tensile and shear forces using first-principles simulations. Our generalized stacking fault energy surface reveals an intrinsic stacking fault of surprisingly low energy comparable to that in copper,(More)