Learn More
We investigate the inside structure of one-dimensional reaction-diffusion traveling fronts. The reaction terms are of the monostable, bistable or ignition types. Assuming that the fronts are made of several components with identical diffusion and growth rates, we analyze the spreading properties of each component. In the monos-table case, the fronts are(More)
We study a birth and death model for the adapatation of a sexual population to an environment. The population is structured by a phenotypical trait, and, possibly, an age variable. Recombination is modeled by Fisher's infinitesimal operator. We prove the existence of principal eigenelements for the corresponding eigenproblem. As the infinitesimal operator(More)
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in(More)
  • 1